
MALLA REDDY ENGINEERING COLLEGE
(Autonomous)

An UGC Autonomous Institution, Approved by AICTE and Affiliated to
JNTUH Hyderabad, Recognized under section 2(f) &12 (B) of UGC Act 1956,

Accredited by NAAC with ‘A’ Grade (II Cycle) and NBA, Maisammaguda,
Dhulapally (Post Via Kompally), Secunderabad-500 100 Website:

www.mrec.ac.in E-mail: principal@mrec.ac.in

ECE & EEE

MICROPROCESSOR AND MICROCONTROLLER

MODULE I
8O85 ARCHITECTURE

MODULE II

INSRUCTION SET
AND PROGRAMMING

WITH 8085

Instruction Set of 8085
An instruction is a binary pattern designed inside a microprocessor to perfo
a specific function.

The entire group of instructions that a microprocessor
supports is called Instruction Set.

8085 has 246 instructions.

Each instruction is represented by an 8-bit binary value.

These 8-bits of binary value is called Op-Code or
Instruction Byte.

2

Classification of Instruction Set

Data TransferInstruction

Arithmetic Instructions

Logical Instructions

Branching Instructions

Control Instructions

3

Data Transfer Instructions

These instructions move data between registers, or
between memory and registers.

These instructions copy data from source to
destination.

While copying, the contents of source are not
modified.

Data Transfer Instructions

This instruction copies the contents of the source register
into the destination register.

The contents of the source register are not altered.

If one of the operands is a memory location, its location is
specified by the contents of the HL registers.

Example: MOV B, C or MOV B,M

Opcode Operand Description

MOV Rd, Rs Copy from source to destination.
M, Rs
Rd, M

Data Transfer Instructions

The 8-bit data is stored in the destination register or
memory.

If the operand is a memory location, its location is
specified by the contents of the H-L registers.

Example: MVI B, 57H or MVI M, 57H

6

Opcode Operand Description

MVI Rd, Data Move immediate 8-bit
M, Data

Data Transfer Instructions

The contents of a memory location, specified by a 16-
bit address in the operand, are copied to the
accumulator.

The contents of the source are not altered.

Example: LDA2034H

7

Opcode Operand Description

LDA 16-bit address Load Accumulator

Data Transfer Instructions

The contents of the designated register pair point to a memory
location.

This instruction copies the contents of that memory location
into the accumulator.

The contents of either the register pair or the memory location
are not altered.

Example: LDAX B

Opcode Operand Description

LDAX B/D Register Load accumulator indirect
Pair

Data Transfer Instructions

This instruction loads 16-bit data in the register pair.

Example: LXI H, 2034 H

Opcode Operand Description

LXI Reg. pair, 16-bit Load register pair immediate
data

Data Transfer Instructions

This instruction copies the contents of memory
location pointed out by 16-bit address into register L.

It copies the contents of next memory location into
register H.

Example: LHLD 2040 H

Opcode Operand Description

LHLD 16-bit address Load H-L registers direct

0 Data Transfer Instructions

The contents of accumulator are copied into the
memory location specified by the operand.

Example: STA 2500 H

Opcode Operand Description
STA 16-bit address Store accumulatordirect

The contents of accumulator are copied into the
memory location specified by the contents of the
register pair.

Example: STAX B

Opcode Operand Description
STAX Reg. pair Store accumulator indirect

Data Transfer Instructions

The contents of register L are stored into memory
location specified by the 16-bit address.

The contents of register H are stored into the next
memory location.

Example: SHLD 2550H

Opcode Operand Description

SHLD 16-bit address Store H-L registersdirect

Data Transfer Instructions

The contents of register H are exchanged with the
contents of register D.

The contents of register L are exchanged with the
contents of register E.

Example: XCHG

14

Opcode Operand Description

XCHG None Exchange H-L with D-E

Data Transfer Instructions

This instruction loads the contents of H-L pair into SP.

Example: SPHL

Opcode Operand Description

SPHL None Copy H-L pair to the Stack Pointer (SP)

Data Transfer Instructions

The contents of L register are exchanged with the
location pointed out by the contents of the SP.

The contents of H register are exchanged with the next
location (SP + 1).

Example: XTHL

Opcode Operand Description

XTHL None Exchange H–L with top of stack

Data Transfer Instructions

The contents of registers H and L are copied into the
program counter (PC).

The contents of H are placed as the high-order byte
and the contents of L as the low-order byte.

Example: PCHL

Opcode Operand Description

PCHL None Load program counter with H-L contents

Data Transfer Instructions

The contents of register pair are copied onto stack.

SP is decremented and the contents of high-order registers
(B, D, H, A) are copied into stack.

SP is again decremented and the contents of low-order
registers (C, E, L, Flags) are copied into stack.

Example: PUSH B

Opcode Operand Description

PUSH Reg. pair Push register pair onto stack

Data Transfer Instructions

The contents of top of stack are copied into register pair.

The contents of location pointed out by SP are copied to
the low-order register (C, E, L, Flags).

SP is incremented and the contents of location are copied
to the high-order register (B, D, H, A).

Example: POP H

Opcode Operand Description

POP Reg. pair Pop stack to register pair

Data Transfer Instructions

• The contents of accumulator are copied into the I/O port.

• Example: OUT 78 H

Opcode Operand Description

OUT 8-bit port Copy datafrom accumulator toa port with8-
address bit address

Data Transfer Instructions

The contents of I/O port are copied into accumulator.

Example: IN 8C H

Opcode Operand Description

IN 8-bit port Copy datato accumulator from a port with8-
address bit address

Arithmetic Instructions

These instructions perform the operations like:

Addition

Subtract

Increment

Decrement

Addition

Any 8-bit number, or the contents of register, or the
contents of memory location can be added to the
contents of accumulator.

The result (sum) is stored in the accumulator.

No two other 8-bit registers can be added directly.

Example: The contents of register B cannot be added
directly to the contents of register C.

Subtraction

Any 8-bit number, or the contents of register, or the
contents of memory location can be subtracted from
the contents ofaccumulator.

The result is stored in the accumulator.

Subtraction is performed in 2’s complement form.

If the result is negative, it is stored in 2’s complement
form.

No two other 8-bit registers can be subtracted directly.

Increment / Decrement

The 8-bit contents of a register or a memory location
can be incremented or decremented by 1.

The 16-bit contents of a register pair can be
incremented or decremented by 1.

Increment or decrement can be performed on any
register or a memory location.

Arithmetic Instructions

• The contents of register or memory are added to the contents of accumulator.

• The result is stored in accumulator.

• If the operand is memory location, its address is specified by H-L pair. All flags are modified

reflect the result of the addition.

• Example: ADD B or ADDM

Opcode Operand Description

ADD R Add register or memory to accumulator M

Arithmetic Instructions
• The contents of register or memory and Carry Flag (CY) are added to the contents
ofaccumulator.

• The result is stored in accumulator.

• If the operand is memory location, its address is specified by H-L pair. All flags are modified

reflect the result of the addition.

• Example: ADC B or ADCM

Opcode Operand Description

ADC R Add register or memory to accumulatorwith
M carry

Arithmetic Instructions

The 8-bit data is added to the contents of accumulator.

The result is stored in accumulator.

All flags are modified to reflect the result of the
addition.

Example: ADI 45 H

Opcode Operand Description

ADI 8-bit data Add immediate to accumulator

Arithmetic Instructions

The 8-bit data and the Carry Flag (CY) are added to the
contents of accumulator.

The result is stored in accumulator.

All flags are modified to reflect the result of the addition.

Example: ACI 45 H

Opcode Operand Description

ACI 8-bit data Add immediate to accumulator with carry

Arithmetic Instructions

The 16-bit contents of the register pair are added to the
contents of H-L pair.

The result is stored in H-L pair.

If the result is larger than 16 bits, then CY is set.

No other flags are changed.

Example: DAD B

Opcode Operand Description
DAD Reg. pair Add register pair to H-L pair

Arithmetic Instructions
• The contents of the register or memory location are subtracted from the contents of the
accumulator.

• The result is stored in accumulator.

• If the operand is memory location, its address is specified by H-L pair. All flags are modified

reflect the result of subtraction.

• Example: SUB B or SUB M

Opcode Operand Description

SUB R Subtract register or memory from accumulator M

Arithmetic Instructions

The contents of the register or memory location and Borrow Flag (i.e.
CY) are subtracted from the contents of the accumulator.

The result is stored in accumulator.

If the operand is memory location, its address is specified by H-L pair.

All flags are modified to reflect the result of subtraction.

Example: SBB B or SBBM

Opcode Operand Description

SBB R
M

Subtract register or memory fromaccumulator
with borrow

Arithmetic Instructions

The 8-bit data is subtracted from the contents of the
accumulator.

The result is stored in accumulator.

All flags are modified to reflect the result of subtraction.

Example: SUI 45 H

Opcode Operand Description

SUI 8-bit data Subtract immediate fromaccumulator

Arithmetic Instructions

The 8-bit data and the Borrow Flag (i.e. CY) is subtracted
from the contents of the accumulator.

The result is stored in accumulator.

All flags are modified to reflect the result of subtraction.

Example: SBI 45 H

Opcode Operand Description

SBI 8-bit data Subtract immediate from accumulator with
borrow

Arithmetic Instructions

The contents of register or memory location are
incremented by 1.

The result is stored in the same place.

If the operand is a memory location, its address is specified
by the contents of H-L pair.

Example: INR B or INR M
35

Opcode Operand Description

INR R Increment register or memory by 1
M

Arithmetic Instructions

• The contents of register pair are incremented by 1.The result is

stored in the same place.

• Example: INX H

Opcode Operand Description

INX R Increment register pair by 1

Arithmetic Instructions

The contents of register or memory location are
decremented by 1.

The result is stored in the same place.

If the operand is a memory location, its address is specified
by the contents of H-L pair.

Example: DCR B or DCR M

Opcode Operand Description

DCR R Decrement register or memory by 1
M

Arithmetic Instructions

• The contents of register pair are decremented by 1.The result is

stored in the same place.

• Example: DCX H

Opcode Operand Description

DCX R Decrement register pair by 1

Logical Instructions
These instructions perform logical operations on data
stored in registers, memory and status flags.

The logical operations are:
AND
OR

XOR
Rotate
Compare
Complement

AND, OR, XOR

Any 8-bit data, or the contents of register, or memory
location can logically have

AND operation

OR operation

XOR operation

with the contents of accumulator.

The result is stored in accumulator.

Rotate
Each bit in the accumulator can be shifted either left or right to the nex
position.

1

Compare

Any 8-bit data, or the contents of register, or memory
location can be compares for:

Equality

Greater Than

Less Than

with the contents of accumulator.

The result is reflected in status flags.

Complement
The contents of accumulator can be complemented.

Each 0 is replaced by 1 and each 1 is replaced by 0.

Logical Instructions

The contents of the operand (register or memory) are
compared with the contents of the accumulator.

Both contents are preserved .

The result of the comparison is shown by setting the
flags of the PSW as follows:

Opcode Operand Description

CMP R Compare register or memorywith
M accumulator

Logical Instructions

if (A) < (reg/mem): carry flag is set

if (A) = (reg/mem): zero flag is set

if (A) > (reg/mem): carry and zero flags are reset.

Example: CMP B or CMPM

Opcode Operand Description

CMP R Compare register or memorywith
M accumulator

Logical Instructions

The 8-bit data is compared with the contents of
accumulator.

The values being compared remain unchanged.

The result of the comparison is shown by setting the
flags of the PSW as follows:

Opcode Operand Description

CPI 8-bit data Compare immediate withaccumulator

Logical Instructions

if (A) < data: carry flag is set

if (A) = data: zero flag isset

if (A) > data: carry and zero flags are reset

Example: CPI 89H

Opcode Operand Description

CPI 8-bit data Compare immediate withaccumulator

Logical Instructions

The contents of the accumulator are logically ANDed with the contents
of register or memory.
The result is placed in the accumulator.

If the operand is a memory location, its address is specified by the
contents of H-L pair.
S, Z, P are modified to reflect the result of the operation.

CY is reset and AC is set.

Example: ANA B or ANA M.

Opcode Operand Description
ANA R

M
LogicalANDregisterormemorywith
accumulator

Logical Instructions

The contents of the accumulator are logically ANDed with
the 8-bit data.

The result is placed in the accumulator.

S, Z, P are modified to reflect the result.

CY is reset, AC isset.

Example: ANI 86H.

Opcode Operand Description

ANI 8-bit data Logical AND immediate with accumulator

Logical Instructions

The contents of the accumulator are logically ORed with the contents of the register or
memory.

The result is placed in the accumulator.

If the operand is a memory location, its address is specified by the contents of H-L pair.

S, Z, P are modified to reflect the result.

CY and AC are reset.

Example: ORA B or ORAM.

Opcode Operand Description

ORA R Logical OR registeror memorywith
M accumulator

Logical Instructions

The contents of the accumulator are logically ORed with
the 8-bit data.

The result is placed in the accumulator.

S, Z, P are modified to reflect the result.

CY and AC are reset.

Example: ORI 86H.

Opcode Operand Description

ORI 8-bit data Logical OR immediate with accumulator

Logical Instructions

The contents of the accumulator are XORed with the contents of
the register or memory.
The result is placed in the accumulator.
If the operand is a memory location, its address is specified by
the contents of H-L pair.
S, Z, P are modified to reflect the result of the operation.
CY and AC are reset.

Example: XRA B or XRAM.

Opcode Operand Description
XRA R

M
LogicalXORregisterormemorywith
accumulator

Logical Instructions

The contents of the accumulator are XORed with the
8-bit data.
The result is placed in the accumulator.
S, Z, P are modified to reflect the result.

CY and AC arereset.
Example: XRI 86H.

Opcode Operand Description
XRI 8-bit data XOR immediate withaccumulator

Logical Instructions

Each binary bit of the accumulator is rotated left by one
position.
Bit D7 is placed in the position of D0 as well as in the Carry
flag.
CY is modified according to bit D7.
S, Z, P,AC are not affected.
Example: RLC.

Opcode Operand Description

RLC None Rotate accumulator left

Logical Instructions

Each binary bit of the accumulator is rotated right by one
position.
Bit D0 is placed in the position of D7 as well as in the Carry
flag.
CY is modified according to bit D0.
S, Z, P,AC are not affected.
Example: RRC.

Opcode Operand Description

RRC None Rotate accumulator right

Logical Instructions

Each binary bit of the accumulator is rotated left by one
position through the Carry flag.
Bit D7 is placed in the Carry flag, and the Carry flag is
placed in the least significant position D0.
CY is modified according to bit D7.
S, Z, P,AC are not affected.
Example: RAL.

Opcode Operand Description

RAL None Rotate accumulator left through carry

Logical Instructions

Each binary bit of the accumulator is rotated right by one
position through the Carry flag.
Bit D0 is placed in the Carry flag, and the Carry flag is
placed in the most significant position D7.
CY is modified according to bit D0.
S, Z, P,AC are not affected.
Example: RAR.

Opcode Operand Description

RAR None Rotate accumulator right through carry

Logical Instructions

The contents of the accumulator are complemented.

No flags areaffected.

Example: CMA.

Opcode Operand Description

CMA None Complement accumulator

Logical Instructions

The Carry flag is complemented.

No other flags are affected.

Example: CMC.

Opcode Operand Description

CMC None Complement carry

Logical Instructions

The Carry flag is set to 1.

No other flags are affected.

Example: STC.

Opcode Operand Description

STC None Set carry

Branching Instructions
The branching instruction alter the normal sequential flow.

These instructions alter either unconditionally or
conditionally.

Branching Instructions

The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

Example: JMP 2034 H.

Opcode Operand Description

JMP 16-bit address Jump unconditionally

Branching Instructions

The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified flag of the PSW.

Example: JZ 2034 H.

Opcode Operand Description

Jx 16-bit address Jump conditionally

Jump Conditionally
Opcode Description Status Flags

JC Jump if Carry CY = 1

JNC Jump if No Carry CY = 0

JP Jump if Positive S = 0

JM Jump if Minus S = 1

JZ Jump if Zero Z = 1

JNZ Jump if No Zero Z = 0

JPE Jump if Parity Even P = 1

JPO Jump if Parity Odd P = 0

Branching Instructions

The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand.

Before the transfer, the address of the next instruction after
CALL (the contents of the program counter) is pushed onto
the stack.

Example: CALL 2034 H.

Opcode Operand Description

CALL 16-bit address Call unconditionally

Branching Instructions

The program sequence is transferred to the memory
location specified by the 16-bit address given in the
operand based on the specified flag of the PSW.

Before the transfer, the address of the next instruction
after the call (the contents of the program counter) is
pushed onto the stack.

Example: CZ 2034 H.

Opcode Operand Description
Cx 16-bit address Call conditionally

Call Conditionally

Opcode Description Status Flags
CC Call if Carry CY = 1

CNC Call if No Carry CY = 0

CP Call if Positive S = 0

CM Call if Minus S = 1

CZ Call if Zero Z = 1

CNZ Call if No Zero Z = 0

CPE Call if Parity Even P = 1

CPO Call if Parity Odd P = 0

Branching Instructions

The program sequence is transferred from the
subroutine to the calling program.

The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

Example: RET.

Opcode Operand Description

RET None Return unconditionally

Branching Instructions

The program sequence is transferred from the
subroutine to the calling program based on the
specified flag of the PSW.

The two bytes from the top of the stack are copied into
the program counter, and program execution begins at
the new address.

Example: RZ.

Opcode Operand Description
Rx None Call conditionally

Return Conditionally
Opcode Description Status Flags

RC Return if Carry CY = 1

RNC Return if No Carry CY = 0

RP Return if Positive S = 0

RM Return if Minus S = 1

RZ Return if Zero Z = 1

RNZ Return if No Zero Z = 0

RPE Return if Parity Even P = 1

RPO Return if Parity Odd P = 0

Branching Instructions

The RST instruction jumps the control to one of eight
memory locations depending upon the number.

These are used as software instructions in a program to
transfer program execution to one of the eight
locations.

Example: RST 3.

Opcode Operand Description

RST 0 – 7 Restart (Software Interrupts)

Restart Address Table
Instructions Restart Address

RST 0 0000 H

RST 1 0008 H

RST 2 0010 H

RST 3 0018 H

RST 4 0020 H

RST 5 0028 H

RST 6 0030 H

RST 7 0038 H

Control Instructions
The control instructions control the operation of
microprocessor.

Control Instructions

No operation is performed.

The instruction is fetched and decoded but no
operation is executed.

Example: NOP

Opcode Operand Description

NOP None No operation

Control Instructions

The CPU finishes executing the current instruction
and halts any further execution.

An interrupt or reset is necessary to exit from the halt
state.

Example: HLT

Opcode Operand Description

HLT None Halt

Control Instructions

The interrupt enable flip-flop is reset and all the
interrupts except the TRAP are disabled.

No flags areaffected.

Example: DI

Opcode Operand Description

DI None Disable interrupt

Control Instructions

The interrupt enable flip-flop is set and all interrupts
are enabled.

No flags areaffected.

This instruction is necessary to re-enable the
interrupts (exceptTRAP).

Example: EI

Opcode Operand Description

EI None Enable interrupt

Control Instructions

This is a multipurpose instruction used to read the
status of interrupts 7.5, 6.5, 5.5 and read serial data
input bit.

The instruction loads eight bits in the accumulator
with the following interpretations.

Example: RIM

Opcode Operand Description

RIM None Read Interrupt Mask

RIM Instruction

Control Instructions

This is a multipurpose instruction and used to
implement the 8085 interrupts 7.5, 6.5, 5.5, and serial
data output.

The instruction interprets the accumulator contents as
follows.

Example: SIM

Opcode Operand Description

SIM None Set Interrupt Mask

SIM Instruction

Instruction Format

An instruction is a command to the microprocessor to perform a given task on a specified data. Each
instruction has two parts: one is task to be performed, called the operation code (opcode), and the second
is the data to be operated on, called the operand. The operand (or data) can be specified in various ways.
It may include 8-bit (or 16-bit) data, an internal register, a memory location, or 8-bit (or 16-bit) address.
In some instructions, the operand is implicit.

Instruction word size

The 8085 instruction set is classified into the following three groups according to word size:

 One-word or 1-byte instructions
 Two-word or 2-byte instructions

 Three-word or 3-byte instructionsIn the 8085, "byte" and "word" are synonymous because it is an 8-
bit microprocessor. However, instructions are commonly referred to in terms of bytes rather than words.

1 One-Byte Instructions
A 1-byte instruction includes the opcode and operand in the same byte. Operand(s)
are internal register and are coded into the instruction

These instructions are 1-byte instructions performing three different tasks. In the first instruction, both
operand registers are specified. In the second instruction, the operand B is specified and the accumulator
is assumed. Similarly, in the third instruction, the accumulator is assumed to be the implicit operand.
These instructions are stored in 8- bit binary format in memory; each requires one memory location.

MOV rd, rs

rd rs copies contents of rs into rd.
Coded as 01 ddd sss

where ddd is a code for one of the 7 general registers which is the destination of the data, sss is the code
of the source register.

Example: MOV A,B

Coded as 01111000 = 78H = 170 octal (octal was used extensively in instruction design of such
processors).

ADD r

AA + r

2 Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte
specifies the operand. Source operand is a data byte immediately following the opcode. For
example:

Table 2.2 Example for 2 byte Instruction

The instruction would require two memory locations to store in memory.

MVI r,data

r data

Example: MVI A,30H coded as 3EH 30H as two contiguous bytes.

This is an example of immediate addressing.

ADI data

AA + data

OUT port

0011 1110

DATA

Where port is an 8-bit device address. (Port)A.

Since the byte is not the data but points directly to where it is located this is called direct addressing.

3 Three-Byte Instructions

In a three-byte instruction, the first byte specifies the opcode, and the following two bytes specify the 16-bit
address. Note that the second byte is the low-order address and the third byte is the high-order address.

opcode + data byte + data byte

Table 3.3 Example for 3 byte Instruction

This instruction would require three memory locations to store in memory.

Three byte instructions - opcode + data byte + data byte

LXI rp, data16

rp is one of the pairs of registers BC, DE, HL used as 16-bit registers. The two data bytes are 16-bit
data in L H order of significance.

rp data16

LXI H,0520H coded as 21H 20H 50H in three bytes. This is also immediate addressing.

LDA addr

A (addr) Addr is a 16-bit address in L H order.

Example: LDA 2134H coded as 3AH 34H 21H. This is also an example of direct addressing.

•

https://www.brainkart.com/article/Important-Short-Questions-and-Answers--8085---8086-Processor_7817/

Stack&subroutines

Assembler directives
Definition: Assembler directives are the instructions used by the assembler at the time of assembling
a source program. More specifically, we can say, assembler directives are the
commands or instructions that control the operation of the assembler.

Thus assembler is used to convert assembly language into machine code so that it can be understood
and executed by the processor.

Therefore, to control the generation of machine codes from the assembly language, assembler
directives are used.

assembler directives:

•show the beginning and end of a program provided to the assembler,
•used to provide storage locations to data,
•used to give values to variables,
•define the start and end of different segments, procedures or macros etc. of a program. Assembler
Directives of 8085

The assembler directives given below are used by 8085 and 8086 assemblers:

DB: Define Byte
This directive is used for the purpose of allocating and initializing single or multiple data bytes.

Memory name AREA has three consecutive locations where 30H, 52H and 35H are to be stored.

DW: Define Word
It is used for initialising single or multiple data words (16-bit).

These two 16-bit data 1020H and 4216H are stored at 4 consecutive locations in the
memory MARK.

END: End of programThis directive is used at the time of program termination.

EQU: Equate
It is used to assign any numerical value or constant to the variable.

Variable name ‘DONE’ has value 10H

MACRO: Represents beginning
Shows the beginning of macro along with defining name and parameters.

ENDM: End of macro

ENDM indicates the termination of macro.

where macroname (STEP) is specified by the user.

ORG: Origin
This directive is used at the time of assigning starting address for a module or segment.

By this instruction, the assembler gets to know that the statements following this instruction, must be stored in the memory location beginning with address 1050H.

Assembler Directives of 8086
These assembler directives are specifically used by 8086:

ASSUME: Shows the segment name to the assembler
It provides information to the assembler regarding the name of the program or data segment for that particular segment.

This directive is used at the time of program termination.

EQU: Equate
It is used to assign any numerical value or constant to the variable.

Variable name ‘DONE’ has value 10H

MACRO: Represents beginning
Shows the beginning of macro along with defining name and parameters.

ENDM: End of macro
ENDM indicates the termination of macro.

ORG: Origin
This directive is used at the time of assigning starting address for a module or segment.

By this instruction, the assembler gets to know that the statements following this instruction, must be stored in the memory location beginning with address 1050H.

Assembler Directives (cont..)

 ASSUME
 DB
 DD
 DQ
 DT
 DW

-
-
-
-
-

Defined Byte.
Defined Double Word
Defined Quad Word
Define Ten Bytes
Define Word

1

Assembler Directives (cont..)
 ASSUME Directive - The ASSUME directive is

used to tell the assembler that the name of the logical
segment should be used for a specified segment.
Example:
ASUME CS:CODE ;This tells the assembler that
the logical segment named CODE contains the instruction
statements for the program and should be treated as a code
segment.
ASUME DS:DATA ;This tells the assembler that
for any instruction which refers to a data in the data segment,
data will found in the logical segment DATA.

2

Assembler Directives (cont..)
 DW - The DW directive is used to define a

variable of type word or to reserve storage location of type
word in memory.
Example:
MULTIPLIER DW 437Ah ; this declares a
variable of type word and named it as MULTIPLIER. This
variable is initialized with the value 437Ah when it is
loaded into memory to run.
EXP1 DW 1234h, 3456h, 5678h ; this declares
an array of 3 words and initialized with specified values.
STOR1 DW 100 DUP(0); Reserve an array of
100 words of memory and initialize all words with
0000.Array is named as STOR1.

Assembler Directives (cont..)

 END
 ENDP
 ENDS
 EQU
 EVEN
 EXTRN

-
-
-
-
-

End Program End Procedure
End Segment Equate
Align on Even Memory Address

Assembler Directives (cont..)

 ENDS - This ENDS directive is used with name of
the segment to indicate the end of that logic segment.

 Example:
CODE SEGMENT ;Hear it Start the logic

;segment containing code
; Some instructions statements to perform the logical
;operation
CODE ENDS ;End of segment named as

;CODE

Assembler Directives (cont..)

 GROUP - The GROUP directive is
used to group the logical segments named after the
directive into one logical group segment.

 INCLUDE - This INCLUDE
directive is used to insert a block of source code from
the named file into the current source module.

Assembler Directives (cont..)

 PROC
 PTR
 PUBLC

-
-

Procedure
Pointer

 SEGMENT
 SHORT
 TYPE

Assembler Directives (cont..)

 PROC - The PROC directive is used to identify
the start of a procedure. The term near or far is used to specify
the type of the procedure.

 Example:
SMART PROC FAR ; This identifies that

the start of a procedure named as SMART and instructs the
assembler that the procedure is far .

SMART ENDP
This PROC is used with ENDP to indicate the break of the

procedure.

Assembler Directives (cont..)
 PUBLIC - The PUBLIC directive is used to

instruct the assembler that a specified name or label will be
accessed from other modules.

 Example:
PUBLIC DIVISOR, DIVIDEND ;these two
variables are public so these are available to all modules.
If an instruction in a module refers to a variable in another

assembly module, we can access that module by declaring
as EXTRN directive.

16

DOS Function Calls

 AH
 AH

00H
01H

: Terminate a Program
: Read the Keyboard

 AH 02H : Write to a Standard Output Device
 AH 08H : Read a Standard Input without Echo
 AH 09H : Display a Character String
 AH
 INT

0AH
21H

: Buffered keyboard Input
: Call DOS Function

Assemble language programs for 8085 microprocessors
Arithmetic operations

Addition of two 8bit Numbers
START:NOP
LXI H,0001H
MOV A,M
INX H

MOV B,M

ADD B

INX H

MOV M,A

HLT

a

Assemble language programs for 8085
microprocessors
Arithmetic operations

Substraction of two 8bit Numbers
START:NOP
LXI H,0001H
MOV A,M
INX H

MOV B,M

SUB B

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

Addition with carry of two 8bit Numbers
START:NOP
LXI H,0001H
MOV A,M
INX H

MOV B,M

ADD B

ADC

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

Substractions with barrow of two 8bit Numbers
START:NOP
LXI H,0001H
MOV A,M
INX H

MOV B,M

SUB B

SBB

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

INCREMENT OPERATION
START:NOP
LXI H,0001H
MOV A,M
INC A

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

DECREMENT OPERATION
START:NOP
LXI H,0001H
MOV A,M
DEC A

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Logical operations

Anding of two 8bit Numbers
START:NOP
LXI H,0001H
MOV A,M
INX H

MOV B,M

ANA B

INX H

MOV M,A

HLT

18

Assemble language programs for 8085
microprocessors
Logical operations

ORing of two 8bit Numbers
START:NOP
LXI H,0001H
MOV A,M
INX H

MOV B,M

ORA B

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Logical operations

XORing of two 8bit Numbers
START:NOP
LXI H,0001H
MOV A,M
INX H

MOV B,M

XRA B

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

COMPLEMENT OPERATION
START:NOP
LXI H,0001H
MOV A,M
CMP A

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

ROTATE LEFT OPERATION
START:NOP
LXI H,0001H
MOV A,M
RLC A

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

ROTATE RIGHT OPERATION
START:NOP
LXI H,0001H
MOV A,M
RRC A

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

ROTATE LEFT WITH CARRY OPERATION
START:NOP
LXI H,0001H
MOV A,M
RAL A

INX H

MOV M,A

HLT

Assemble language programs for 8085
microprocessors
Arithmetic operations

ROTATE RIGHT WITH CARRY OPERATION
START:NOP
LXI H,0001H
MOV A,M
RAR A

INX H

MOV M,A

HLT

MODULE –III

8086 ARCHITECTURE

INTRODUCTION

COMPUTER

Microprocessor
• A microprocessor is an electronic component

that is used by a computer to do its work. It is a
central processing unit on a single integrated
circuit chip containing millions of very small
components including transistors, resistors,
and diodes that work together.

Motherboard

Types of
microprocessors

Intel 8086

Architecture &
Programming

Features of 8086 Microprocessor
 1) 8086 has 16-bit ALU; this means 16-bit numbers are

directly processed by 8086.

 2) It has 16-bit data bus, so it can read data or write
data to memory or I/O ports either 16 bits or 8 bits at a
time.

 3) It has 20 address lines, so it can address up to 220 i.e.
1048576 = 1Mbytes of memory (words i.e. 16 bit
numbers are stored in consecutive memory locations).
Due to the 1Mbytes memory size multiprogramming is
made feasible as well as several multiprogramming
features have been incorporated in 8086 design.

Features Continued …
 4) 8086 includes few features, which enhance

multiprocessing capability (it can be used with math
coprocessors like 8087, I/O processor 8089 etc.

 5) Operates on +5v supply and single phase (single line)
clock frequency.(Clock is generated by separate
peripheral chip 8284).

 6) 8086 comes with different versions. 8086 runs at 5
MHz, 8086-2 runs at 8 MHz, 8086-1 runs at 10 MHz.

 7) It comes in 40-pin configuration with HMOS
technology having around 20,000 transistors in its
circuitry.

Features Continued …
• 8) It has multiplexed address and data bus like 8085 due to which the pin

count is reduced considerably
• 9) Higher Throughput (Speed)(This is achieved by a concept called

pipelining)But the concept of 8086’s principles and structures is very
useful for understanding other advanced Intel microprocessors.

• 10) it will work in the 2 modes , 1st is minimum mode and 2nd is maximum
mode.

• Minimum mode : If only 1 processor is used in any system to perform the
operation that is called as minimum mode operation.

• Maximum mode : If more than 1 processor is used in any system to
perform the operations that is called as maximum mode operations.

Main components present in the microprocessor

1. Arithmetic logic unit (ALU) : An arithmetic logic
unit (ALU) is a combinational digital
electronic circuit that
performs arithmetic and bitwise
operations on integer binary numbers.

2. Registers : which is used to store the data and
addresses of program.
It is a group of the flip flops.

3. Buses : bus is the group of the parallel conducting
wires which carries the data from one place to
another.
These are 2 types :
1) Data bus : which carry the data of program one

place to another place. It is bi-directional.
2) Address bus : which carry the address of the

program . It is uni-directional.

• 4. Memory : This is storage device which is used to
store program code and data.

5. Instruction queue : it fetch the instructions from the memory and
place the instructions in the serial order to perform the operation like
FIFO (first In first out).

Internal Architecture of 8086

C bus

A bus

B bus

 The 8086 microprocessor architecture divided into 2 functional units:
1. Bus interface unit
2. Execution unit
 BUS INTERFACE UNIT: it acts as bridge between external devices like memory and in /out

devices to execution unit. It provides a full 16 bit bidirectional data bus and 20 bit address bus.
• The bus interface unit is responsible for performing all external bus operations.
• Instructions fetch Instruction queuing, Operand fetch and storage, Address relocation and Bus

control.
 It fetch the instructions or data from memory.
 It writes the data to memory.
 It writes the data to ports.
 It reads the data from ports.
 It is also having 3 functional parts:
1. Instruction pointer (IP)
2. Segment registers
3. Instruction queue

BIU

EU

Fetch (From
memory/In&out)

Result (to
memory/in&out)

• Instruction pointer : it is a 16 bit register that keeps
the address of memory location of coming
instructions to be executed.

• Segment register : the memory space of mega bite
of 8086 is segment into 4blocks . Each block is
specified by register with maximum size of64kb.
Code segment (cs)
Data segment (ds)
Stack segment (ss)
Extra segment (es)

1Mb

64Kb
64Kb

64Kb
64Kb

INSTRUCTION QUEUE: BIU performs its operation
in parallel with execution unit.

• BIU fetch instruction byte while execution unit is
executing operations.

• The prefetched instruction is saved in group of
highspeed register and is known as instruction
queue.

Execution unit

• The Execution unit is responsible for decoding and executing all instructions.
• The EU extracts instructions from the top of the queue in the BIU, decodes them,

generates operands if necessary, passes them to the BIU and requests it to
perform the read or write bys cycles to memory or I/O

• During the execution of the instruction, the EU tests the status and control flags
and updates them based on the results of executing the instruction

Contd..

• If the queue is empty, the EU waits for the next instruction byte to be
fetched and shifted to top of the queue.

• When the EU executes a branch or jump instruction, it transfers
control to a location corresponding to another set of sequential
instructions.

• Whenever this happens, the BIU automatically resets the queue and
then begins to fetch instructions from this new location.

Memory
Segmentation

1Mb

 The division of the 1Mbyte
memory of 8086 MP into 4
segments with 64Kb memory size
called as memory segmentation.
The 4 segments are code
segment , data segment , extra
segment , stack segment.

Advantages of memory segmentation
 Allow the memory capacity to be 1Mb even though the

addresses associated with the individual instructions are only 16
bits wide.

 Facilitate the use of separate memory areas for the program, its
data and the stack.

 Permit a program and/or its data to be put into different areas of
memory each time the program is executed.

 Multitasking becomes easy.
 Allows the placing of code, data and stack portions of the same

program in different parts (segments) of the m/y, for data and
code protection.

 The segment registers are used to allow the instruction, data or
stack portion of the program to be more than 64Kbytes long .
The above can be achieved by using more than one code , data
or stack segments.

PHYSICAL MEMORY
ORGANISATION

512 KB 512 KB

• The 8086’s 1Mbyte memory address space is divided in to
two independent 512Kbyte banks: the low (even) bank and
the high (odd) bank.

• Data bytes associated with an even address (0000016,
0000216, etc.) reside in the low bank, and those with odd
addresses (0000116, 0000316, etc.) reside in the high bank.

• Address bits A1 through A19 select the storage location that
is to be accessed. They are applied to both banks in parallel.
A0and bank high enable (BHE) are used as bank-select
signals.
The four different cases that happen during accessing data:

Case 1: When a byte of data at an even address (such as X) is to be accessed:

•A0 is set to logic 0 to enable the low bank of memory.
•BHE is set to logic 1 to disable the high bank.

Case 2: When a byte of data at an odd address (such as X+1) is to be accessed

•A0is set to logic 1 to disable the low bank of memory.
•BHE is set to logic 0 to enable the high bank.

Case 3: When a word of data at an even address (aligned word) is to be accessed:

•A0 is set to logic 0 to enable the low bank of memory.
•BHE is set to logic 0 to enable the high bank.

Case 4: When a word of data at an odd address (misaligned word) is to be accessed, then the 8086 need two bus cycles to
access it:
a) During the first bus cycle, the odd byte of the word (in the high bank) is addressed

•A0 is set to logic 1 to disable the low bank of memory
•BHE is set to logic 0 to enable the high bank.

REGISTER ORGANISATION IN 8086
MP

Generation of 20 bit physical address
The 20-bit Physical address is often represented as:
Segment Base address+ Offset OR CS + IP
CS 3 4 8 0 0Implied Zero (from shft Left)
+IP 1 2 3 4

3 5 A3 4 H
• So , physical address = base address of segment registers

+ offset value of pointer registers/index registers.
• Base address of segment registers obtained by appending

the 0 at the LSB position of segment base values.

• Always physical addresses are generated by adding like these:
• Code segment base address + offset value of instruction pointer
• Data segment base address + off set value of base pointer
• Extra segment base address + off set value of index registers/base

pointer
• Stack segment base address + off set value of stack pointer
• If segment value is given in hexadecimal then physical address

can be calculated as
• Physical address=segment value×10+offset value
• For example CS=2345 ,offset of IP is1020 THEN
• Pysical Address =2345×10+1020
• =23450+1020
• =24470

PROGRAMMING MODEL

• Address field is address of the instruction where the
instruction is stored in the memory.

• Opcode means operation code.
• Destination operand is the place where data to be

transferred.it may register / memory.
• Source operand is the place from which data is transmitted

to destination apprehend . It may be memory / register.
• Comment is description of programme statement .

Address field Opcode Destination
operand

Source
operand

comment

Addressing modes of 8086
Every instruction of programme has to operate on data. The different way in which source

operand is denoted in an instruction are know as addressing modes

The addressing mode describes the types of operands and the way they are accessed for

executing an instruction. According to the flow of instruction execution, the instructions may
be categorized as

1. Sequential control flow instructions (Data Category)

2. Control transfer instructions(Branch Category)

Sequential control flow instructions are the instructions which after execution, transfer

control to the next instruction appearing immediately after it (in the sequence) in the
program.

For example

the arithmetic, logic, data transfer and processor control instructions are Sequential

control flow instructions.

The control transfer instructions on the other hand transfer control to some predefined

address or the address somehow specified in the instruction, after their execution.

For example

INT, CALL, RET & JUMP instructions fall under this category.

The addressing modes for Sequential flow instructions are
explained as follows. .

1. Immediate addressing mode
2. Direct addressing mode
3. Register addressing mode
4. Register indirect addressing mode
5. Indexed addressing mode
6. Register relative addressing mode
7. Based indexed addressing mode
8. . Relative based indexed

1. Immediate addressing mode:

In this type of addressing, immediate data is a part of instruction, and appears

in the form of successive byte or bytes.

Example: MOV AX, 0005H.

In the above example, 0005H is the immediate data. The immediate data may be 8- bit or
16-bit in size.

2. Direct addressing mode:

In the direct addressing mode, a 16-bit memory address (offset) directly specified in the

instruction as a part of it.

Example: MOV AX, [5000H].

3. Register addressing mode:

In the register addressing mode, the data is stored in a register and it is referred using the

particular register. All the registers, except IP, may be used in this mode.

Example: MOV BX, AX

4. Register indirect addressing mode:
Sometimes, the address of the memory l o c a t i o n which

contains data or operands is determined in an indirect way,
using the offset registers. The mode of addressing is known
as register indirect mode.

In this addressing mode, the offset address of data is in either
BX or SI or DI Register. The default segment is either DS or
ES.

Example: MOV AX, [BX].
5. Indexed addressing mode:
In this addressing mode, offset of the operand is stored one of

the index registers. DS & ES are the default segments for
index registers SI & DI respectively.

Example: MOV AX, [SI]
Here, data is available at an offset address stored in SI in DS.

6. Register relative addressing mode:
In this addressing mode, the data is available at an

effective address formed by adding an 8-bit or 16-bit
displacement with the content of any one of the
register BX, BP, SI & DI in the default(either in DS & ES)
segment.

Example: MOV AX, 50H [BX]
7. Based indexed addressing mode:
The effective address of data is formed in this addressing

mode, by adding content of a base register (any one of
BX or BP) to the content of an index register (any one
of SI or DI).

Thedefault segment register may be ES or DS.
Example: MOV AX, [BX][SI]

8. Relative based indexed:

The effective address is formed by adding an 8 or 16-bit displacement with the sum of

contents of any of the base registers (BX or BP) and any one of the index registers, in a default

segment.

Example: MOV AX, 50H [BX] [SI]

Addressing Modes for control transfer instructions

For the control transfer instructions, the addressing modes depend upon whether the

destination location is within the same segment or in a different one.

It also depends upon the method of passing the destination address to the processor.

Basically, there are two addressing modes for the control transfer instructions,

They are Inter segment and intra segment addressing modes.

If the location to which the control is to be transferred lies in a different segment

other than the current one, the mode is called intersegment mode.

If the destination location lies in the same segment, the mode is called intra segment mode.

• Addressing Modes for control transfer instructions:

• 1. Intersegment

• ・ Intersegment direct

• ・ Intersegment indirect

• 2. Intrasegment

• ・ Intrasegment direct

• ・ Intrasegment indirect

• 1. Intersegment direct:

• In this mode, the address to which the control is to be transferred is in a different segment.

• This addressing mode provides a means of branching from one code segment to another code

• segment. Here, the CS and IP of the destination address are specified directly in the instruction.

• Example: JMP 5000H, 2000H; jump to effective address 2000H in segment 5000H.

• 2. Intersegment indirect:

• In this mode, the address to which the control is to be transferred lies in a different

• segment and it is passed to the instruction indirectly, i.e. contents of a memory block

• containing four bytes, i.e. IP(LSB), IP(MSB), CS(LSB) and CS(MSB) sequentially. The

• starting address of the memory block may be referred using any of the addressing modes,

• except immediate mode.

• Example: JMP [2000H].

• Jump to an address in the other segment specified at effective address 2000H in DS.

3. Intrasegment direct mode:

In this mode, the address to which the control is to be transferred lies in the same

segment in which the control transfers instruction lies and appears directly in the

instruction as an immediate displacement value. In this addressing mode, the displacement

is computed relative to the content of the instruction pointer.

The effective address to which the control will be transferred is given by the sum

of 8 or 16 bit displacement and current content of IP. In case of jump instruction, if

the signed displacement (d) is of 8-bits (i.e. -128<d<+127), it as short jump and if it is of 16

bits (i.e. -32768<d<+32767), it is termed as long jump.

Example: JMP SHORT LABEL.

4. Intrasegment indirect mode:

In this mode, the displacement to which the control is to be transferred is in the

same segment in which the control transfer instruction lies, but it is passed to the

instruction directly. Here, the branch address is found as the content of a register or a

memory location.

This addressing mode may be used in unconditional branch instructions.

Example: JMP [BX]; Jump to effective address stored in BX.

INSTRUCTION SET OF 8086

• Classified into 7 categories:
• 1] Data Transfer
• 2] Arithmetic
• 3] Logical
• 4] Control
• 5]Processor Control Instructions
• 6] String Manipulation
• 7] Interrupt Control

Data Transfer Instructions

 Note : Data Transfer Instructions do not affect any flags
 1] MOV dest, src
 Note that source and destination cannot be memory location. Also source

and destination must be same type.
 2] PUSH Src: Copies word on stack.
 3] POP dest: Copies word from stack into dest. Reg.
 4] IN acc, port : Copies 8 or 16 bit data from port to accumulator.
 a) Fixed Port
 b) Variable Port
 5] OUT port, acc

Data Transfer Instructions Cont…

 6] LES Reg, Mem: Load register and extra segment
register with words from memory.

 7] LDS Reg,Mem: Load register and data segment
register with words from memory.

 8] LEA Reg,Src: load Effective address.
(Offset is loaded in specified register)

 9] LAHF: Copy lower byte of flag register into AH
register.

 10] SAHF: Copy AH register to lower byte of flag

Data Transfer Instructions Cont …

• 11] XCHG dest, src: Exchange contents of source and destination.
• 12] XLAT: Translate a byte in AL.

This instruction replaces the byte in AL with byte pointed by BX.To
point desired byte in look up table instruction adds contains of BX
with AL (BX+ AL). Goes to this location and loads into AL.

Arithmetic Instructions

 1]ADD dest,src
 2] ADC dest,src: Add with carry
 3] AAA : ASCII adjust after addition.

We can add two ASCII numbers directly and use AAA after addition
so as to get result directly in BCD. (Works with AL only)

 4] DAA : Decimal adjust accumulator.
(Works with AL only)

Arithmetic Instructions Cont…
 5] SUB dest, src

 6] SBB dest, src: Subtract with borrow.

 7] AAS: ASCII adjust for subtraction
(same as AAA and works with AL only)

 8] DAS : Decimal adjust after Subtraction.
(works with AL only)

 9] MUL src

 10] IMUL src: Multiplication of signed byte.

Arithmetic Instructions Cont…
• 11] AAM: BCD adjust after multiply.

(works with AL only)
• 12]DIV src

If any one attempts to divide by 0 , then ?
• 13] IDIV: Division of signed numbers
• 14]AAD: BCD to Binary convert before Division.
• 15] DEC dest

Arithmetic Instructions Cont…

• 16] INC dest
• 17] CWD: Convert signed word to signed double word.
• 18] CBW : Convert signed byte to signed word.

(CBW and CWD works only with AL, AX and DX)
• 19] NEG dest: Forms 2’s complement.

Logical Instructions

 1] AND dest, src
 2] NOT dest: Invert each bit in destination
 3] OR dest, src
 4] XOR dest, src
 5] RCL dest, count : Rotate left through Carry

Rotate as many times as directly specified in the instruction. For more no.of rotations,
count can be specified in CL register.

 6] RCR dest, count : Rotate right through carry
 7] ROL dest, count : Rotate left (into carry as well as into LSB)
 8] ROR dest, Count : Rotate left (into carry as well as into MSB)

Logical Instructions Cont…
• 9] SAL/ SHL dest, count : Shift left and append 0s on

right.
• 10] SAR dest, count : Shift right retain a copy of the S-

bit and shift all bits to right.
• 11]SHR dest, count : Shift right append 0s on left
• 12] TEST dest, src: AND logically, updates flags but

source and dest are unchanged.

Logical Instructions Cont…

• 13] CMP dest, src
• CF, ZF and SF are used
Ex. CMP CX,BX

CF ZF SF
• CX = BX 0 1 0
• CX> BX 0 0 0
• CX<BX 1 0 1

CONTROL TRANSFER INSTRUCTIONS

• 1]CALL : Call a procedure
Two types of calls:

i) Near Call (Intrasegment)
ii) Far Call (Intersegment)

• 2] RET : Return execution from procedure
• 3] JMP : Unconditional Jump to specified destination. Two types

near and Far

CONTROL TRANSFER INSTRUCTIONS
Cont…

 4] JA / JNBE: Jump if above / Jump if not below
The terms above and below are used when we refer
to the magnitude of Unsigned number .
Used normally after CMP.

 5] JAE / JNB / JNC
 6] JB / JC / JNAE
 7] JBE / JNA
 8] JE/ JZ

CONTROL TRANSFER INSTRUCTIONS
Cont…
• 9] JCXZ: Jump if CX is Zero.
• 10] JG / JNLE: Jump if Greater /Jump if NOT less than

or equal.
The term greater than or less than is used in
connection with two signed numbers.

• 11] JGE / JNL:
• 12] JL / JNGE :
• 13] JLE / JNG :
• 14]JNE / JNZ :

CONTROL TRANSFER
INSTRUCTIONS Cont…

• 15] JNO : Jump if no overflow
• 16] JNS : Jump if no sign
• 17] JS
• 18] JO
• 19] JNP / JPO
• 20] JP / JPE

In all above conditional instructions the destination of
jump is in the range of -128 to + 127 bytes from the
address after jump.

CONTROL TRANSFER INSTRUCTIONS Cont…

 21] LOOP: Loop to the specified label if CX is not equal
to Zero.
The count is loaded in CX reg. Every time LOOP is
executed, CX is automatically decremented - used in
delay programs

 22] LOOPE/ LOOPZ: Loop while CX is not equal to zero
and ZF = 1.

 23] LOOPNE / LOOPNZ: Loop while CX not equal to zero
and ZF = 0.
In all above LOOP instructions the destination of jump is
in the range of -128 to + 127 bytes from the address after
LOOP.

PROCESSOR CONTROL
• 1] CLC: Clear Carry flag.
• 2] STC :Set carry Flag
• 3] CMC :Complement Carry Flag
• 4] CLD: Clear Direction Flag.
• 5] STD: Set Direction Flag
• 6] CLI :Clear Interrupt Flag.
• 7] STI : Set Interrupt Flag.
• 8] HLT: Halt Processing.

PROCESSOR CONTROL Cont…

 9] NOP : No Operation
 10] ESC: Escape

Executed by Co-processors and actions are
performed according to 6 bit coding in the
instruction.

 11] LOCK : Assert bus lock Signal
This is a prefix instruction.

 12] WAIT :Wait for test or Interrupt Signal.
Assert wait states.

STRING CONTROL

 1] MOVS/ MOVSB/ MOVSW
Dest string name,src string name
This instn moves data byte or word from location in DS to location in
ES.

 2] REP / REPE / REPZ / REPNE / REPNZ
Repeat string instructions until specified conditions exist.
This is prefix a instruction.

STRING CONTROL Contd…
 3] CMPS / CMPSB / CMPSW

Compare string bytes or string words.

 4] SCAS / SCASB / SCASW
Scan a string byte or string word.
Compares byte in AL or word in AX. String address is to be loaded in DI.

 5] STOS / STOSB / STOSW
Store byte or word in a string.
Copies a byte or word in AL or AX to memory location pointed by DI.

 6] LODS / LODSB /LODSW
Load a byte or word in AL or AX

 Copies byte or word from memory location pointed by SI into AL or
AX register.

Interrupt Control

• 1]INT type

• 2] INTO Interrupt on overflow

• 3] IRET Interrupt return

ASSEMBLER DIRECTIVES

 1] ASSUME
Used to tell assembler the name of logical segment. Ex. ASSUME CS: Code
here

 2] END
 3] DB
 4] DW
 5] DD Define Double Word
 6] DQ Define Quad Word
 7] DT Define Ten Bytes

ASSEMBLER DIRECTIVES Cont…
 8] PROC Procedure

PROC DELAY NEAR
 9] ENDP
 10] ENDS
 11] EQU
 12] EVEN: Align on even memory address.
 13] ORG
 14] OFFSET

Ex: MOV BX, Offset of Data Here
 15] PTR Pointer

ASSEMBLER DIRECTIVES Cont…

• 16] LABEL
Ex: AGAIN LABEL FAR

• 17] EXTRN
Tells the assembler that the names or labels following
this directive is in some other assembly module.

• 18] PUBLIC
Links modules together

ASSEMBLER DIRECTIVES Cont…
 19] INCLUDE

Include source code from file.

 20] NAME
To give specific name to module.

 21] GROUP
Grouping of logical segments.

 22] SEGMENT

 23] SHORT
Operator that tells assembler about short displacement.

 24] TYPE
Type of variable whether byte or word.

A Macro is a set of instructions grouped under a single unit. It is
another method for implementing modular programming in
the 8086 microprocessors (The first one was using
Procedures). ... The advantage of using Macro is that it avoids
the overhead time involved in calling and returning (as in the
procedures).

Macro

TIMING DIAGRAMS FOR 8086
• The graphical representation of operation of microprocessor with clock cycles is

called as timing diagram

• TIMING DIAGRAMS FOR 8086 IN MINIMUM MODE BUS CYCLE AND TIME
STATES

• A bus cycle or machine cycle defines the sequence of events when the MPU
communicates with an external device, which starts with an address being
output on the system bus followed by a read or write data transfer. •

• Types of bus cycles: Memory Read Bus Cycle, Memory Write Bus Cycle
Input/output Read Bus Cycle, Input/output Write Bus Cycle.

• One cycle of clock is called a state or t-state. The bus cycle of the 8086
microprocessor consists of at least four clock periods.

• These four time states are called T1, T2, T3 and T4.
• This group of states is called a MACHINE CYCLE.
• The total time required to fetch and execute an instruction is called an

instruction cycle. An instruction cycle consists of one or more machine cycle.

• The following figure shows a memory read cycle of the 8086:

• • During period T1,

• o The 8086 outputs the 20-bit address of the memory location to be accessed on its multiplexed

• address/data bus. BHE is also output along with the address during T1.

• o At the same time a pulse is also produced at ALE. The trailing edge or the high level of this pulse is used

• to latch the address in external circuitry.

• o Signal M/IO is set to logic 1 and signal DT/R is set to the 0 logic level and both are maintained

• throughout all four periods of the bus cycle.

• • Beginning with period T2,

• o Status bits S3 through S6 are output on the upper four address bus lines. This status information is

• maintained through periods T3 and T4.

• o On the other hand, address/data bus lines AD0 through AD7 are put in the high-Z state during T2.

• o Late in period T2, RD is switched to logic 0. This indicates to the memory subsystem that a read cycle is

• in progress. DEN is switched to logic 0 to enable external circuitry to allow the data to move from

• memory onto the microprocessor's data bus.

• • During period T3,

• o The memory must provide valid data during T3 and maintain it until after the processor terminates the

• read operation. The data read by the 8086 microprocessor can be carried over all 16 data bus lines.

• • During T4,

• o The 8086 switches RD to the inactive 1 logic level to terminate the read operation. DEN returns to its

• inactive logic level late during T4 to disable the external circuitry.

MEMORY READ CYCLE FOR 8086 IN MINIMUM MODE

• The following figure shows a memory write cycle of the 8086:
• • During period T1,
• o The address along with BHE is output and latched with the ALE

pulse.
• o M/IO is set to logic 1 to indicate a memory cycle.
• o However, this time DT/R is switched to logic 1. This signals

external circuits that the 8086 is going to
• transmit data over the bus.
• • Beginning with period T2,
• o WR is switched to logic 0 telling the memory subsystem that a

write operation is to follow.
• o The 8086 puts the data on the bus late in T2 and maintains the

data valid through T4. Data will be carried
• over all 16 data bus lines.
• o DEN enables the external circuitry to provide a path for data

from the processor to the memory

I/O INTERFACE

• Any application of a microprocessor based system requires the
transfer of data between external circuitry to the microprocessor and
microprocessor to the external circuitry. User can give information to
the microprocessor based system using keyboard and user can see
the result or output information from the microprocessor based
system with the help of display device. The transfer of data between
keyboard and microprocessor, and microprocessor and display device
is called input/output data transfer or I/O data transfer. This data
transfer is done with the help of I/O port

• The generation of path between two devices to flow data,or
Interconnection of two devices is called interfacing.

Input port:

• It is used to read data from the input device such as
keyboard. The simplest form of input port is a
buffer. The input device is connected to the
microprocessor through buffer, as shown in the
fig.1. This buffer is a tri-state buffer and its output
is available only when enable signal is active. When
microprocessor wants to read data from the input
device (keyboard), the control signals from the
microprocessor activates the buffer by asserting
enable input of the buffer. Once the buffer is
enabled, data from the input device is available on
the data bus. Microprocessor reads this data by
initiating read command

Output port:

• It is used to send data to the output device such as
display from the microprocessor. The simplest form
of output port is a latch. The output device is
connected to the microprocessor through latch, as
shown in the fig.2. When microprocessor wants to
send data to the output device is puts the data on
the data bus and activates the clock signal of the
latch, latching the data from the data bus at the
output of latch. It is then available at the output of
latch for the output device.

Interfacing Analog to Digital Data Converters

• In most of the cases, the PIO 8255 is used for interfacing the analog to digital
converters with microprocessor.

• We have already studied 8255 interfacing with 8086 as an I/O port, in previous
section. This section we will only emphasize the interfacing techniques of analog
to digital converters with 8255.

• The analog to digital converters is treated as an input device by the
microprocessor that sends an initializing signal to the ADC to start the analogy
to digital data conversation process. The start of conversation signal is a pulse of
a specific duration.

• The process of analog to digital conversion is a slow
• Process and the microprocessor have to wait for the digital data till the

conversion is over. After the conversion is over, the ADC sends end of conversion
EOC signal to inform the microprocessor that the conversion is over and the
result is ready at the output buffer of the ADC. The set asks of issuing an SOC
pulse to ADC, reading EOC signal from the ADC and reading the digital output of
the ADC are carried out by the CPU using 8255 I/O ports.

• The time taken by the ADC from the active edge of SOC pulse till the active edge of EOC signal is
called as the conversion delay of the ADC.

• It may range anywhere from a few microseconds in caseof fast ADC to even a few hundred
milliseconds in case of slow ADCs.

• The available ADC in the market use different conversion techniques for conversion of analog
signal to digitals. Successive approximation techniques and dual slope integration techniques are
the most popular techniques used in the integrated ADC chip.

• General algorithm for ADC interfacing contains the following steps:

• Ensure the stability of analog input, applied to the ADC.

• Issue start of conversion pulse to ADC

• Read end of conversion signal to mark the end of conversion processes.

• Read digital data output of the ADC as equivalent digital output.

• Analog input voltage must be constant at the input of the ADC right from the start of conversion
till the end of the conversion to get correct results. This may be ensured by as ample and hold
circuit which samples the analog signal and holds it constant for specific time duration. The
microprocessor may issue a hold signal to the sample and hold circuit.

• If the applied input changes before the complete conversion process is over, the digital
equivalent of the analog input calculated by the ADC may not be correct.

ADC 0808/0809:

• The analog to digital converter chips 0808 and 0809 are 8-bit CMOS,
successive approximation converters. This technique is one of the fast
techniques for analog to digital conversion. The conversion delay is 100μs
at a clock frequency of 640 KHz, which is quite low as compared to other
converters. These converters do not need any external zero or full scale
adjustments as they are already taken care of by internal circuits.

• These converters internally have a 3:8 analog multiplexer so that at a
time eight different analog conversion by using address lines - ADD A, ADD
B, ADD C, as shown. Using these address inputs, multichannel data

Fig (1) and Fig (2) show the block diagrams
and pin diagrams for ADC 0808/0809.

Fig (1) and Fig (2) show the block diagrams
and pin diagrams for ADC 0808/0809

Fig.1 Block Diagram of ADC 0808/0809

Fig.2 Pin Diagram of ADC 0808/0809

Interfacing ADC0808 with 8086
Interfacing Digital

Interfacing Digital To Analog Converters:
The
• The digital to analog converters convert binary numbers into their analog

equivalent voltages. The DAC find applications in areas like digitally
controlled gains, motor speed controls, programmable gain amplifiers, etc.

• DAC0800 8-bit Digital to Analog Converter
• The DAC 0800 is a monolithic 8-bit DAC manufactured by National

Semiconductor.
• It has settling time around 100ms and can operate on a range of power

supply voltages i.e. from 4.5V to +18V.
• Usually the supply V+ is 5V or +12V.
• The V-pin can be kept at a minimum of -12V

Pin Diagram of DAC 0800
Interfacing DAC0800

Interfacing DAC0800 with 8086 Ad 7523
8-Bit Multiplying DAC:

Keyboard Interfacing

• In most keyboards, the key switches are connected in a matrix of Rows and Columns.

• Getting meaningful data from a keyboard requires three major tasks:

• 1. e t e c t a k e y p r e s s

• 2. D e b o u n c e t h e k e y p r e s s .

• 3. Encode the keypress (produce a standard code for the pressed key).

• Logic „0‟ is read by the microprocessor when the key is pressed.

• Key Debounce:

• Whenever a mechanical push-bottom is pressed or released once,the mechanical
components of the key do not change the positionsmoothly; rather it generates a
transient response.

• These may be interpreted as the multiple pressures and responded accordingly.

• The rows of the matrix are connected to four output Port lines, &columns are connected to four
input Port lines.

• When no keys are pressed, the column lines are held high by the pull-up resistors connected to +5v.

• Pressing a key connects a row & a column.

• To detect if any key is pressed is to output 0‟s to all rows & then check columns to see it a pressed
key has connected a low (zero) to a column.

• Once the columns are found to be all high, the program enters another loop, which waits until a low
appears on one of the columns i.e indicating a key press.

• A simple 20/10 m sec delay is executed to debounce task.

• After the debounce time, another check is made to see if the key is still pressed. If the columns are
now all high, then no key is pressed & the initial detection was caused by a noise pulse.

• To avoid this problem, two schemes are suggested:

• 1. Use of Bistable multivibrator at the output of the key to debounce it.

• 2. The microprocessor has to wait for the transient period (at least for 10 ms), so that the transient
response settles down and reaches a steady state.

• If any of the columns are low now, then the assumption is made that it was a valid key press.

• The final task is to determine the row & column of the pressed key &convert this information to Hex-
code for the pressed key.

• The 4-bit code from I/P port & the 4-bit code from O/P port (row &column) are converted to Hex-
code.

INTERFACING 4×4 KEYBOARD

DISPLAY INTERFACE

Interfacing multiplexed 7-segment display

Interfacing of memory with 8086
microprocessor

M0DULE-IV
(INTRODUCTION TO
MICROCONTROLLER)

• A microcontroller is a small and low-cost microcomputer,
which is designed to perform the specific tasks of embedded
systems like displaying microwave’s information, receiving
remote signals, etc.

• The general microcontroller consists of the processor, the
memory (RAM, ROM, EPROM), Serial ports, peripherals
(timers, counters), etc.

• 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package).

• It is an Electronic IC.

APPLICATIONS OF MICROCONTROLLER

internal

microprocessor

• 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package),
4kb of ROM storage and 128 bytes of RAM storage, 2 16-bit
timers.

• It consists of are four parallel 8-bit ports, which are
programmable as well as addressable as per the requirement.

• An on-chip crystal oscillator is integrated in the microcontroller
having crystal frequency of 12 MHz

• 32 I/O Pins (Input / Output Pins) – Arranged as 4 Ports: P0, P1, P2 and
P3.

• 8- bit Stack Pointer (SP) and Processor Status Word (PSW).
• 16 – bit Program Counter (PC) and Data Pointer (DPTR).
• Two 16 – bit Timers / Counters – T0 and T1.
• Control Registers – SCON, PCON, TCON, TMOD, IP and IE.
• Serial Data Transmitter and Receiver for Full – Duplex Operation –

SBUF.
• Interrupts: Two External and Three Internal.
• Oscillator and Clock Circuit.

• CPU (Central Processing Unit)
• It is the heart of the Microcontroller that mainly comprises of an

Arithmetic Logic Unit (ALU) and a Control Unit (CU) and other
important components. The CPU is the primary device in
communicating with peripheral devices like Memory, Input and
Output.

• Clock Generator (Oscillator)
• A clock signal allows the operations inside the microcontroller and

other parts to be synchronous. A Clock Generator is an integral part of
the Microcontroller’s Architecture and the user has to provide an
additional Timing Circuit in the form of a Crystal.

• Input and Output Ports
• I/O Ports or Input / Output Ports provide the microcontroller, a

physical connection to the outside world. Input Ports provide a
gateway for passing on the data from the outside world with the help
of sensors.

• The data from the input ports is manipulated (depending on the
application) and will determine the data on the output port.

• Output Ports allow microcontroller to control external devices (like
motors and LEDs). Generally, all ports in microcontrollers have dual
functionality i.e. they can act as both input and output port (not at
the same time though).

• Memory –
• A Microcontroller needs program memory to store program/instructions to

perform defined tasks. This memory is termed as ROM. Furthermore the
Microcontroller also requires data memory to store the operands/data on a
temporary basis. This memory is known as RAM. The 8051 Microcontroller is built
with 4 Kb on-chip Read Only Memory (ROM) and 128 bytes Random Access
Memory (RAM).

• Address Bus –
• A bus of the Microcontroller can be defined as a group of wire which can act as a

medium for the transfer of data. There are two buses present in the 8051
Microcontroller. While we are already aware of the Data Bus, let us know about
the Address Bus of the 8051 Microcontroller. The address bus, which is used to
address memory locations, is 16-bit wide. Furthermore, the address bus can also
be used to transfer data from the CPU (Central Processing Unit) to the
memory. Hence, for obvious reasons the address bus is unidirectional.

•

• Interrupts –
• The most powerful attribute of the 8051 Microcontroller is the concept of Interrupts. The

interrupt is a mechanism to –
• Temporarily suspend the ongoing program,
• Pass the control to a subroutine,
• Execute the subroutine,
• Resume the ongoing/main program.
• Interrupts can be of various types, such as, Software and Hardware interrupts, Non-

maskable and maskable interrupts, etc. Now the 8051 Microcontroller incorporates five
interrupts. These are :

• INT0 – External Hardware Interrupt.
• TF0 – Timer 0 Overflow Interrupt.
• INT1 – External Hardware Interrupt.
• TF1 – Timer 1 Overflow Interrupt.
• R1/T1 – Serial communication Interrupt.

• Input/Output Ports –
• The 8051 Microcontroller needs to be connected to the peripheral devices

in order to control their operations. The I/O Ports are responsible for the
connection of the Microcontroller to its peripheral devices. There are
total Four 8-bit Input/Output Ports present in this Microcontroller.

• Additionally, these are some important features of 8051 microcontroller
given as follows :

• Two 16-bit Timers and Counters.
• A Data Pointer and a Program Counter of 16-bit each.
• 128 User defined Flags.
• Four Register banks.
• 31 General Purpose Registers which are of 8-bit each.
• Pin diagram of 8051 Microcontroller –

. ALU:
It is 8 bit unit. It performs arithmetic operation as addition, subtraction,
multiplication, division,
increment and decrement
. It performs logical operations like AND, OR and EX-OR operations
.Program counter(PC):
The Program Counter (PC) is a 2-byte address which tells the 8051 where
the next instruction to execute is found in memory.
It is used to hold 16 bit address of internal RAM, external RAM or
external ROM locations.
When the 8051 is initialized PC always starts at 0000h and is incremented
each time an instruction is executed.
It is important to note that PC isn't always incremented by one and never
decremented.

• Stack pointer(SP): It is 8-bit register. It is byte addressable. Its
address is 81H. It is used to hold the internal RAM memory location
addresses which are used as stack memory. When the data is to be
placed on stack by push instruction, the content of stack pointer is
incremented by 1, and when data is retrieved from stack, content of
stack of stack pointer is decremented by 1.

Internal RAM
Internal RAM has memory 128-byte. See 8051 hardware for further internal RAM design.
Internal RAM is organized into three distinct areas: 32 bytes working registers from address 00h to 1Fh
16 bytes bit
addressable occupies RAM byte address 20h to 2Fh, altogether 128 addressable bits General purpose
RAM from 30h to 7Fh.
Internal ROM
Data memory and program code memory both are in different physical memory but both have the same
addresses.
An internal ROM occupied addresses from 0000h to 0FFFh. PC addresses program codes from 0000h
to 0FFFh.
Program addresses higher than 0FFFh that exceed the internal ROM capacity will cause 8051
architecture to
fetch codes bytes from external program memory.

• Program status word
(PSW): this is a special
function register and
consists of different status
bits that reflect the current
state of microcontroller.

• It contains carry(CY) ,
axillary carry(AC) and two
registors bank select bits
(RS1 and RS0), over flow
flag(OV) , a parity bit(P)
and 2 user defined status
flags.

Oscillator and clock generator:

All operations in a microcontroller are synchronized by the help of an oscillator
clock.
The oscillator clock generates the clock pulses by which all internal operations are
synchronized.
A resonant network connected through pins XTAL1 and XTAL2 forms up an
oscillator.
For this purpose a quartz crystal and capacitors are employed.
The crystal run at specified maximum and minimum frequencies typically at 1 MHz
to 16 MHz.

Special function Registers(SFR):
8051 microcontroller has 11 SFR divided in 4 groups:
A. Timer/Counter register: 8051 microcontroller has 2-16 bit Timer/counter registers called Timer-
reg-T0 And
Timer/counter Reg-T1.Each register is 16 bit register divide into lower and higher byte register as
shown below:
These register are used to hold initial no. of count. All of the 4 register are byte addressable.

1. Timer control register: 8051 microcontroller has two 8-bit timer control register i.e. TMOD and
TCON register.

1) TMOD Register: it is 8-bit register. Its address is 89H. It is byte addressable.
It used to select mode and control operation of time by writing control word.
2). TCON register: It is 8-bit register. Its address is 88H. It is byte addressable.
Its MSB 4-bit are used to control operation of timer/ counter and LSB 4-bit are used for

external interrupt control.

2.. Serial data register: 8051 micro controller has 2 serial data register viz. SBUF and SCON.
1. Serial buffer register (SBUF): it is 8-bit register. It is byte addressable .

Its address is 99H. It is used to hold data which is to be transferred serially.
2. Serial control register (SCON): it is 8-bit register. It is bit/byte addressable.

Its address is 98H. The 8-bit loaded into this register controls the operation
of serial communication.

3. Interrupt register: 8051 µC has 2 8-bit interrupt register
.1. Interrupt enable register (IE): it is 8-bit register. It is bit/byte addressable. Its address is A8H.

it is used to enable and disable function of interrupt.
2. Interrupt priority register (IP): It is 8-bit register. It is bit/byte addressable.

Its address is B8H.it is used to select low or high level priority of each individual interrupts.
4. Power control register (PCON): it is 8-bit register. It is byte addressable .Its address is 87H.

its bits are used to control mode of power saving circuit, either idle or power down mode
and also one bit is used to modify baud rate of serial communication.

4. Power control register (PCON): it is 8-bit register. It is byte
addressable .Its address is 87H.

its bits are used to control mode of power saving circuit, either idle
or power down mode

and also one bit is used to modify baud rate of serial
communication.

Difference between Von Neumann and
Harvard Architecture
• Von Neumann Architecture

• Von Neumann Architecture is a digital computer architecture whose
design is based on the concept of stored program computers where
program data and instruction data are stored in the same memory.
This architecture was designed by the famous mathematician and
physicist John Von Neumann in 1945.

Von Neumann Architecture

Harvard Architecture

• Harvard Architecture is the digital computer architecture whose
design is based on the concept where there are separate storage and
separate buses (signal path) for instruction and data. It was basically
developed to overcome the bottleneck of Von Neumann Architecture.

Harvard Architecture

Difference between Von Neumann and Harvard Architecture :

It is ancient computer architecture based on
stored program computer concept.

It is modern computer architecture based on
Harvard Mark I relay based model.

Same physical memory address is used for
instructions and data.

Separate physical memory address is used for
instructions and data.

There is common bus for data and instruction
transfer.

Separate buses are used for transferring data and
instruction.

Two clock cycles are required to execute single
instruction. An instruction is executed in a single cycle.

It is cheaper in cost. It is costly than van neumann architecture.

CPU can not access instructions and read/write
at the same time.

CPU can access instructions and read/write at the
same time.

It is used in personal computers and small
computers.

It is used in micro controllers and signal
processing.

RISC Architecture Basics

• The word RISC stands for ‘Reduced Instruction Set Computer’.
• It is such a design of the CPU that follows simple instructions and is really speedy.
• Basically, it is a subset of a number of instructions. In simple words, each command performs a really

simple and small jobs.
• In such a computer, the set of instructions is simple and easy to implement.
• Therefore, it becomes easy to implement such commands that are really complex and difficult to

execute as single instructions. Every instruction is of almost the same length.
• In short, it divides complex instructions into simple instructions using Piplelining. Pipelining is a

multi stage process to execute instructions.
• Normally,it can execute a single instruction in one machine cycle.

Pipelining in RISC
• This method is a pipelining which is mainly increase the speed of the RISC machines.
• It is a very crucial technique. Reduced Instruction Set Computer is a Architecture which is

designed in such a way that it carries out only a few commands in parallel simultaneously. Due
to the small size if the instructions, the chips used in this sort of architecture need a very few
number of transistors.

• In RISC very less decoding is required. Plus, the data types in the hardware are also less. The
general purpose register is the same one for all.

• The instruction set is uniform. And the addressing nodes are really simple.
• Finally when a job is being performed, RISC saves the number of cycles in which it is being

executed by eliminating the unnecessary part of the code.

Characteristic of RISC Architecture
• There are a lot of characteristics related to the RISC architecture, some of them are as follows:

1. Simple set of instructions which are easy to decode and implement.
2. The size of one instruction comes under the size of a single word.
3. Only one clock cycle is required to execute a single instruction, so it is a fast process.
4. The quantity of general purpose register is greater.
5. The addressing modes are quite simple.
6. The variable data types are very less.
7. Its main idea is to achieve pipelining
.
• Example – Let’s suppose we are to perform addition operation on two 8-bit numbers:
• The load command will be used to load the data in the registers and then the addition operator will

be used on them and the result will be stored in the location of the output.
•

CISC Architecture Introductin

• The word CISC is abbreviated as ‘’Complex Instruction Set Computer’’.
• It is such a design of the CPU that executes a job using only a single command. The command contains

multi-step operations that program want to execute.
• Moreover, CISC machines have relatively smaller programs.
• Whereas, the number of compound instruction size is huge.
• Therefore, it requires a lot of time in execution. In this type of architecture, each instruction set is very well

protected in various steps.
• This means that there are extra three hundred instructions related to each set of instruction. Due to this,

the instructions take time in their execution.
• Their time may vary from two to ten machine cycles, depending on the size of the instruction set.

Furthermore, CISC architecture doesn’t implement pipelining normally as it is hard to.

Main Features of CISC

• If we see from the prospective of compilers, CISC machines are good for them.
• Because the range of innovative instructions are easily obtained in a single instruction set. They execute

the compound instructions in only a single and complex set of instructions.
• CISC is able to get processes at low-level. Hence, it is easier this way to have addressing nodes that are

huge and a lot of different data types in machine hardware.
• Despite of all this CISC works less efficiently than the way RISC works.
• This is mainly because CISC is unable to remove the portion of the code that is not required and so a lot

of cycles are wasted by them when the instruction set is executed.
• Plus, their microprocessor chips are very difficult to manufacture and program. They are really complex.

Characteristic of CISC
• There are a lot of characteristics related to the CISC architecture, some of them are as follows:
1. The instruction set is complex. Hence. is its decoding.
2. Instructions are normally large due to their complexity. Instructions are normally bigger than one word

size.
3. Usually, the compound instructions take greater time than a single clock cycle in their execution.
4. The number of general purpose registers are less. Because this, it performs most operations in the

memory itself.
5. The addressing modes are normally complex.
6. The data types are numerous.
• Example – Let’s suppose we are to perform addition operation on two 8-bit numbers:
• Only one instruction is used for the execution of this operation. The ADD operation will simply perform

the required task. All the tasks will be done by this single command.

RISC vs CISC

This very equation is normally used to check the performance of any compute

This formula clearly tells that the performance of a RISC based architecture is way better than the one
operating using CISC architecture. CISC and RISC are two entirely different types of computer architectures.
Some of their differences are as follows:

Difference between RISC and CISC Comparison Chart

Memory unit is present to implement the instructions There is no memory unit and registers store data

It is microprogramming unit It has a complex design of compiler
Its compiler design is easy Compiler design is complex
Its calculations are slower yet precise Perform mathematical calculations faster
Their decoding is difficult Decoding of its instructions is easier

Instructions are complex so it takes time in execution It is faster as its instructions are simple

External memory mandatory requirement No external memory requirment

Pipelining is difficult to implement Pipelining is easy to implement
Their processors often stall There is no stalling normally
Code expansion is easier The expansion of code can be an issue
Utilize more disk space Consumes less disk space

Its examples include:include VAX, PDP-11, Motorola 68k and your
desktop PCs

Its examples include:DEC Alpha, ARC, AMD 29k, Atmel AVR, Intel
i860, Blackfin, i960, Motorola 88000, MIPS, PA-RISC, Power, SPARC,
SuperH, and ARM

CISC RISC

The pin diagram of 8051 microcontroller
looks as follows

• Pins 1 to 8 − These pins are known as Port 1. This port doesn’t serve any other functions. It is
internally pulled up, bi-directional I/O port.

• Pin 9 − It is a RESET pin, which is used to reset the microcontroller to its initial values.
• Pins 10 to 17 − These pins are known as Port 3. This port serves some functions like interrupts,

timer input, control signals, serial communication signals RxD and TxD, etc.
• Pins 18 & 19 − These pins are used for interfacing an external crystal to get the system clock.
• Pin 20 − This pin provides the power supply to the circuit.
• Pins 21 to 28 − These pins are known as Port 2. It serves as I/O port. Higher order address bus

signals are also multiplexed using this port.
• Pin 29 − This is PSEN pin which stands for Program Store Enable. It is used to read a signal from

the external program memory.
• Pin 30 − This is EA pin which stands for External Access input. It is used to enable/disable the

external memory interfacing.
• Pin 31 − This is ALE pin which stands for Address Latch Enable. It is used to demultiplex the

address-data signal of port.
• Pins 32 to 39 − These pins are known as Port 0. It serves as I/O port. Lower order address and

data bus signals are multiplexed using this port.
• Pin 40 − This pin is used to provide power supply to the circuit.

Microcontrollers 8051 Input Output Ports
• 8051 microcontrollers have 4 I/O ports each of 8-bit, which can be configured as

input or output. Hence, total 32 input/output pins allow the microcontroller to be
connected with the peripheral devices.

• Pin configuration, i.e. the pin can be configured as 1 for input and 0 for output as
per the logic state.

• Input/Output (I/O) pin − All the circuits within the microcontroller must be connected to one
of its pins except P0 port because it does not have pull-up resistors built-in.

• Input pin − Logic 1 is applied to a bit of the P register. The output FE transistor is turned off
and the other pin remains connected to the power supply voltage over a pull-up resistor of
high resistance.

• Port 0 − The P0 (zero) port is characterized by two functions −
• When the external memory is used then the lower address byte (addresses A0A7) is applied

on it, else all bits of this port are configured as input/output.
• When P0 port is configured as an output then other ports consisting of pins with built-in pull-

up resistor connected by its end to 5V power supply, the pins of this port have this resistor
left out.

• Input Configuration

• If any pin of this port is configured as an input, then it acts as if it “floats”, i.e. the input has unlimited input resistance and in-determined
potential.

• Output Configuration

• When the pin is configured as an output, then it acts as an “open drain”. By applying logic 0 to a port bit, the appropriate pin will be
connected to ground (0V), and applying logic 1, the external output will keep on “floating”.

• In order to apply logic 1 (5V) on this output pin, it is necessary to build an external pullup resistor.

• Port 1

• P1 is a true I/O port as it doesn’t have any alternative functions as in P0, but this port can be configured as general I/O only. It has a built-in
pull-up resistor and is completely compatible with TTL circuits.

• Port 2

• P2 is similar to P0 when the external memory is used. Pins of this port occupy addresses intended for the external memory chip. This port
can be used for higher address byte with addresses A8-A15. When no memory is added then this port can be used as a general
input/output port similar to Port 1.

• Port 3

• In this port, functions are similar to other ports except that the logic 1 must be applied to appropriate bit of the P3 register.

• Pins Current Limitations

• When pins are configured as an output (i.e. logic 0), then the single port pins can receive a current of 10mA.

• When these pins are configured as inputs (i.e. logic 1), then built-in pull-up resistors provide very weak current, but can activate up to 4 TTL
inputs of LS series.

• If all 8 bits of a port are active, then the total current must be limited to 15mA (port P0: 26mA).

• If all ports (32 bits) are active, then the total maximum current must be limited to 71mA.

8051 Microcontroller Memory Organization

• 8051 Microcontroller Memory Organization. The 8051
Microcontroller Memory is separated in Program Memory (ROM)
and Data Memory (RAM). The Program Memory of the 8051
Microcontroller is used for storing the program to be executed i.e.
instructions. The Data Memory on the other hand, is used for storing
temporary variable data and intermediate ...

PROGRAM MEMORY (ROM) OF 8051 MICROCONTROLLER

• In 8051 Microcontroller, the code or instructions to be executed are stored
in the Program Memory, which is also called as the ROM of the
Microcontroller. The original 8051 Microcontroller by Intel has 4KB of
internal ROM.

• In case of 4KB of Internal ROM, the address space is 0000H to 0FFFH. If the
address space i.e. the program addresses exceed this value, then the CPU
will automatically fetch the code from the external Program Memory.

• For this, the External Access Pin (EA Pin) must be pulled HIGH i.e. when
the EA Pin is high, the CPU first fetches instructions from the Internal
Program Memory in the address range of 0000H to 0FFFFH and if the
memory addresses exceed the limit, then the instructions are fetched from
the external ROM in the address range of 1000H to FFFFH.As shown in fig

INTERNAL ROM AND EXTERNAL ROM ORGANIZATION OF 8051

There is another way to fetch the instructions: ignore the Internal ROM and fetch all the instructions only
from the External Program Memory (External ROM). For this scenario, the EA Pin must be connected to GND.
In this case, the memory addresses of the external ROM will be from 0000H to FFFFH.as shown in fig

DATA MEMORY (RAM) OF 8051 MICROCONTROLLER

• The Data Memory or RAM of the 8051 Microcontroller stores temporary data and intermediate results that
are generated and used during the normal operation of the microcontroller. Original Intel’s 8051
Microcontroller had 128B of internal RAM.

• But almost all modern variants of 8051 Microcontroller have 256B of RAM. In this 256B, the first 128B i.e.
memory addresses from 00H to 7FH is divided in to Working Registers (organized as Register Banks), Bit –
Addressable Area and General Purpose RAM (also known as Scratchpad area).

• In the first 128B of RAM (from 00H to 7FH), the first 32B i.e. memory from addresses 00H to 1FH consists of
32 Working Registers that are organized as four banks with 8 Registers in each Bank.

• The 4 banks are named as Bank0, Bank1, Bank2 and Bank3. Each Bank consists of 8 registers named as R0 –
R7. Each Register can be addressed in two ways: either by name or by address.

• To address the register by name, first the corresponding Bank must be selected. In order to select the bank,
we have to use the RS0 and RS1 bits of the Program Status Word (PSW) Register (RS0 and RS1 are 3rd and
4th bits in the PSW Register).

• The next 16B of the RAM i.e. from 20H to 2FH are Bit – Addressable memory locations. There are totally 128
bits that can be addressed individually using 00H to 7FH or the entire byte can be addressed as 20H to 2FH.

The final 80B of the internal RAM i.e. addresses from 30H to 7FH, is the general purpose RAM area which
are byte addressable.
These lower 128B of RAM can be addressed directly or indirectly.

• The upper 128B of the RAM i.e. memory addresses from 80H to FFH is
allocated for Special Function Registers (SFRs). SFRs control specific
functions of the 8051 Microcontroller. Some of the SFRs are I/O Port
Registers (P0, P1, P2 and P3), PSW (Program Status Word), A
(Accumulator), IE (Interrupt Enable), PCON (Power Control), etc.

• SRFs Memory addresses are only direct addressable. Even though some
of the addresses between 80H and FFH are not assigned to any SFR, they
cannot be used as additional RAM area.

• In some microcontrollers, there is an additional 128B of RAM, which
share the memory address with SFRs i.e. 80H to FFH. But, this additional
RAM block is only accessed by indirect addressing.

INSTRUCTION SET OF 8051 MICROCONTROLLER

DATA
TRANSFER
INSTRUCTIONS

ARITHMATIC
INSTRUCTIONS

LOGICAL
INSTRUCTIONS

BOOLEAN
INSTRUCTIONS

PROGRAMME
BRANCHING
INSTRUCTIONS

ADDRESSING MODES OF 8051
• Addressing mode: The way instruction is provided
• 8051 provides total 5 addressing modes

• They are 1) Immediate

• 2)Direct

• 3)Register

• 4)Register Indirect

• 5)Indexed

• 1)) Immediate addressing mode: In this addressing mode the source is constant

• Immediate data must be proceeded by sign” # “

• This addressing mode can be used to load information into any one of regiter.

• syntax mov A, #25H; load 25h into A

• mov Rn, #30; Load decimal value into Rn register(n=0 to 7)

• mov DPTR, #4521H; load DPTR=4521H

• 2)Direct Addressing mode: This mode used to access RAM locations of 8051(30-7F)

• This mode the direct address of memory location is provided in instruction to fetch the operand. Only internal RAM and
SFR's address can be used in this type of instruction.

•
syntax : MOV A, 30H ; Content of RAM address 30H is copied into Accumulator.

• : MOV 30H , A; Content of Accumulator. is copied into RAM address 30H

• 3) Register Addressing modes: Register addressing mode involves use of registers to hold the data to be
manipulated

• Syntax: mov A,Rn; copy the content of Rn into A
• Mov Rn, A; copy the content of A into Rn

• ADD A,Rn,; add the content of Rn to A

•

• 4) Register Indirect Addressing modes:Here the address of memory location is indirectly
provided by a register. The '@' sign indicates that the register holds the address of memory location i.e. fetch the
content of memory location whose address is provided in register.

syntax: MOV A,@R0 => Copy the content of memory location whose address is given in R0 register.

• 5). Indexed Addressing mode:
• This addressing mode is basically used for accessing data from look up table. Here the address of memory is indexed

i.e. added to form the actual address of memory.

syntax: MOVC A,@A+DPTR => here 'C' means Code. Here the content of A register is added with content of DPTR
and the resultant is the address of memory location from where the data is copied to A register.

Types of Interrupts in 8051 Microcontroller

• The 8051 microcontroller can recognize five different events
that cause the main program to interrupt from the normal
execution. These five sources of interrupts in 8051are:

1.Timer 0 overflow interrupt- TF0
2.Timer 1 overflow interrupt- TF1
3.External hardware interrupt- INT0
4.External hardware interrupt- INT1
5.Serial communication interrupt- RI/TI

The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are
generated by additional interfacing devices or switches that are externally connected to the microcontroller. These
external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes
the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt
corresponding to the memory location is given in the interrupt vector table below.

https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/

Interrupt Structure of 8051 Micro controller

Upon ‘RESET’ all the interrupts get disabled, and therefore, all these interrupts must be enabled by a
software. In all these five interrupts, if anyone or all are activated, this sets the corresponding
interrupt flags as shown in the figure. All these interrupts can be set or cleared by bit in some special
function register that is Interrupt Enabled (IE), and this in turn depends on the priority, which is
executed by IP interrupt priority register.

interrupt structure of 8051 microcontroller

Interrupt Enable (IE) Register
• Interrupt Enable (IE) Register: This register is responsible for

enabling and disabling the interrupt. It is a bit addressable
register in which EA must be set to one for enabling interrupts.
The corresponding bit in this register enables particular interrupt
like timer, external and serial inputs. In the below IE register, bit
corresponding to 1 activates the interrupt and 0 disables the
interrupt.

Interrupt Enable (IE) Register

Interrupt Priority Register
• Interrupt Priority Register (IP): It is also possible to change

the priority levels of the interrupts by setting or clearing the
corresponding bit in the Interrupt priority (IP) register as shown
in the figure. This allows the low priority interrupt to interrupt the
high-priority interrupt, but prohibits the interruption by another
low-priority interrupt. Similarly, the high-priority interrupt cannot
be interrupted. If these interrupt priorities are not programmed,
the microcontroller executes in predefined manner and its order
is INT0, TF0, INT1, TF1, and SI.

Interrupt Priority Register

• TCON Register: In addition to the above two registers, the
TCON register specifies the type of external interrupt to the
8051 microcontroller, as shown in the figure. The two external
interrupts, whether edge or level triggered, specify by this
register by a set, or cleared by appropriate bits in it. And, it is
also a bit addressable register.

Interrupt Programming in 8051

• 1.Timer Interrupt Programming
• Timer 0 and Timer 1 interrupts are generated by the timer register

bits TF0 and TF1. These interrupts programming by C code involves:
• Selecting the timer by configuring TMOD register and its mode of

operation.
• Choosing and loading the initial values of TLx and THx for

appropriate modes.
• Enabling the IE registers and corresponding timer bit in it.
• Setting the timer run bit to start the timer.
• Writing the subroutine for the timer for time required and clear timer

value TRx at the end of subroutine.

https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/

• 2.External Hardware Interrupt Programming
• 8051 microcontrollers consists of two external hardware

interrupts: INT0 and INT1 as discussed earlier. These are
enabled at pin 3.2 and pin 3.3. These can be edge triggered or
level triggered. In level triggering, the low at pin 3.2 enables the
interrupt, while at pin 3.2 – the high to low transition enables the
edge triggered interrupt. This edge triggering or level triggering
is decided by the TCON register that has been discussed
above. The programming procedure in 8051 is as follows:

• Enable the corresponding bit of external interrupt in IE register.
• If it is level triggering, just write the subroutine appropriate to

this interrupt, or else enable the TCON register bit
corresponding to the edge triggered interrupt – whether it is
INT0 or INT1.

https://www.elprocus.com/how-to-program-the-microcontroller/

• 3.Serial Communication Interrupt Programming
• Serial communication interrupts come into picture when there is a

need to send or receive data. Since one interrupt bit is set for both TI
(Transfer Interrupt) and RI (Receiver Interrupt) flags, Interrupt
Service routine must examine these flags to know the actual
interrupt.

• The logical OR operation of these two flags (RI ands TI) causes this
interrupt, and it is cleared by the software alone. Here, a special
register SCON is used for controlling communication operation by
enabling the corresponding bits in it.

• Configure the IE register for enabling serial interrupt
• Configure the SCON register for receiving or transferring operation
• Write subroutine for this interrupt with appropriate function and clear

TI or RI flags with in this routine.

https://www.elprocus.com/communication-based-projects-engineering-students/

MODULE-V
8051 REAL TIME CONTROL

• A microcontroller is a small and low-cost microcomputer,
which is designed to perform the specific tasks of embedded
systems like displaying microwave’s information, receiving
remote signals, etc.

• The general microcontroller consists of the processor, the
memory (RAM, ROM, EPROM), Serial ports, peripherals
(timers, counters), etc.

• 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package).

• It is an Electronic IC.

• 8051 microcontroller is designed by Intel in 1981. It is an 8-bit
microcontroller. It is built with 40 pins DIP (dual inline package),
4kb of ROM storage and 128 bytes of RAM storage, 2 16-bit
timers.

• It consists of are four parallel 8-bit ports, which are
programmable as well as addressable as per the requirement.

• An on-chip crystal oscillator is integrated in the microcontroller
having crystal frequency of 12 MHz

• 32 I/O Pins (Input / Output Pins) – Arranged as 4 Ports: P0, P1, P2 and
P3.

• 8- bit Stack Pointer (SP) and Processor Status Word (PSW).
• 16 – bit Program Counter (PC) and Data Pointer (DPTR).
• Two 16 – bit Timers / Counters – T0 and T1.
• Control Registers – SCON, PCON, TCON, TMOD, IP and IE.
• Serial Data Transmitter and Receiver for Full – Duplex Operation –

SBUF.
• Interrupts: Two External and Three Internal.
• Oscillator and Clock Circuit.

• Interrupts –
• The most powerful attribute of the 8051 Microcontroller is the concept of Interrupts. The

interrupt is a mechanism to –
• Temporarily suspend the ongoing program,
• Pass the control to a subroutine,
• Execute the subroutine,
• Resume the ongoing/main program.
• Interrupts can be of various types, such as, Software and Hardware interrupts, Non-

maskable and maskable interrupts, etc. Now the 8051 Microcontroller incorporates five
interrupts. These are :

• INT0 – External Hardware Interrupt.
• TF0 – Timer 0 Overflow Interrupt.
• INT1 – External Hardware Interrupt.
• TF1 – Timer 1 Overflow Interrupt.
• R1/T1 – Serial communication Interrupt.

• Input/Output Ports –
• The 8051 Microcontroller needs to be connected to the peripheral devices

in order to control their operations. The I/O Ports are responsible for the
connection of the Microcontroller to its peripheral devices. There are
total Four 8-bit Input/Output Ports present in this Microcontroller.

• Additionally, these are some important features of 8051 microcontroller
given as follows :

• Two 16-bit Timers and Counters.
• A Data Pointer and a Program Counter of 16-bit each.
• 128 User defined Flags.
• Four Register banks.
• 31 General Purpose Registers which are of 8-bit each.
• Pin diagram of 8051 Microcontroller –

Special function Registers(SFR):
8051 microcontroller has 11 SFR divided in 4 groups:
A. Timer/Counter register: 8051 microcontroller has 2-16 bit Timer/counter registers called Timer-
reg-T0 And
Timer/counter Reg-T1.Each register is 16 bit register divide into lower and higher byte register as
shown below:
These register are used to hold initial no. of count. All of the 4 register are byte addressable.

1. Timer control register: 8051 microcontroller has two 8-bit timer control register i.e. TMOD and
TCON register.

1) TMOD Register: it is 8-bit register. Its address is 89H. It is byte addressable.
It used to select mode and control operation of time by writing control word.
2). TCON register: It is 8-bit register. Its address is 88H. It is byte addressable.
Its MSB 4-bit are used to control operation of timer/ counter and LSB 4-bit are used for

external interrupt control.

2.. Serial data register: 8051 micro controller has 2 serial data register viz. SBUF and SCON.
1. Serial buffer register (SBUF): it is 8-bit register. It is byte addressable .

Its address is 99H. It is used to hold data which is to be transferred serially.
2. Serial control register (SCON): it is 8-bit register. It is bit/byte addressable.

Its address is 98H. The 8-bit loaded into this register controls the operation
of serial communication.

3. Interrupt register: 8051 µC has 2 8-bit interrupt register
.1. Interrupt enable register (IE): it is 8-bit register. It is bit/byte addressable. Its address is A8H.

it is used to enable and disable function of interrupt.
2. Interrupt priority register (IP): It is 8-bit register. It is bit/byte addressable.

Its address is B8H.it is used to select low or high level priority of each individual interrupts.
4. Power control register (PCON): it is 8-bit register. It is byte addressable .Its address is 87H.

its bits are used to control mode of power saving circuit, either idle or power down mode
and also one bit is used to modify baud rate of serial communication.

4. Power control register (PCON): it is 8-bit register. It is byte
addressable .Its address is 87H.

its bits are used to control mode of power saving circuit, either idle
or power down mode

and also one bit is used to modify baud rate of serial
communication.

Types of Interrupts in 8051 Microcontroller

• The 8051 microcontroller can recognize five different events
that cause the main program to interrupt from the normal
execution. These five sources of interrupts in 8051are:

1.Timer 0 overflow interrupt- TF0
2.Timer 1 overflow interrupt- TF1
3.External hardware interrupt- INT0
4.External hardware interrupt- INT1
5.Serial communication interrupt- RI/TI

The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are
generated by additional interfacing devices or switches that are externally connected to the microcontroller. These
external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes
the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt
corresponding to the memory location is given in the interrupt vector table below.

https://www.elprocus.com/peripherals-interfacing-to-the-microcontroller-8051-in-electronics/

Interrupt Structure of 8051 Micro controller

Upon ‘RESET’ all the interrupts get disabled, and therefore, all these interrupts must be enabled by a
software. In all these five interrupts, if anyone or all are activated, this sets the corresponding
interrupt flags as shown in the figure. All these interrupts can be set or cleared by bit in some special
function register that is Interrupt Enabled (IE), and this in turn depends on the priority, which is
executed by IP interrupt priority register.

interrupt structure of 8051 microcontroller

Interrupt Enable (IE) Register
• Interrupt Enable (IE) Register: This register is responsible for

enabling and disabling the interrupt. It is a bit addressable
register in which EA must be set to one for enabling interrupts.
The corresponding bit in this register enables particular interrupt
like timer, external and serial inputs. In the below IE register, bit
corresponding to 1 activates the interrupt and 0 disables the
interrupt.

Interrupt Enable (IE) Register

Interrupt Priority Register
• Interrupt Priority Register (IP): It is also possible to change

the priority levels of the interrupts by setting or clearing the
corresponding bit in the Interrupt priority (IP) register as shown
in the figure. This allows the low priority interrupt to interrupt the
high-priority interrupt, but prohibits the interruption by another
low-priority interrupt. Similarly, the high-priority interrupt cannot
be interrupted. If these interrupt priorities are not programmed,
the microcontroller executes in predefined manner and its order
is INT0, TF0, INT1, TF1, and SI.

Interrupt Priority Register

• TCON Register: In addition to the above two registers, the
TCON register specifies the type of external interrupt to the
8051 microcontroller, as shown in the figure. The two external
interrupts, whether edge or level triggered, specify by this
register by a set, or cleared by appropriate bits in it. And, it is
also a bit addressable register.

Interrupt Programming in 8051

• 1.Timer Interrupt Programming
• Timer 0 and Timer 1 interrupts are generated by the timer register

bits TF0 and TF1. These interrupts programming by C code involves:
• Selecting the timer by configuring TMOD register and its mode of

operation.
• Choosing and loading the initial values of TLx and THx for

appropriate modes.
• Enabling the IE registers and corresponding timer bit in it.
• Setting the timer run bit to start the timer.
• Writing the subroutine for the timer for time required and clear timer

value TRx at the end of subroutine.

https://www.elprocus.com/basics-and-structure-of-embedded-c-program-with-examples-for-beginners/

• 2.External Hardware Interrupt Programming
• 8051 microcontrollers consists of two external hardware

interrupts: INT0 and INT1 as discussed earlier. These are
enabled at pin 3.2 and pin 3.3. These can be edge triggered or
level triggered. In level triggering, the low at pin 3.2 enables the
interrupt, while at pin 3.2 – the high to low transition enables the
edge triggered interrupt. This edge triggering or level triggering
is decided by the TCON register that has been discussed
above. The programming procedure in 8051 is as follows:

• Enable the corresponding bit of external interrupt in IE register.
• If it is level triggering, just write the subroutine appropriate to

this interrupt, or else enable the TCON register bit
corresponding to the edge triggered interrupt – whether it is
INT0 or INT1.

https://www.elprocus.com/how-to-program-the-microcontroller/

External
Hardware
Interrupt
Programming

• 3.Serial Communication Interrupt Programming
• Serial communication interrupts come into picture when there is a

need to send or receive data. Since one interrupt bit is set for both TI
(Transfer Interrupt) and RI (Receiver Interrupt) flags, Interrupt
Service routine must examine these flags to know the actual
interrupt.

• The logical OR operation of these two flags (RI ands TI) causes this
interrupt, and it is cleared by the software alone. Here, a special
register SCON is used for controlling communication operation by
enabling the corresponding bits in it.

• Configure the IE register for enabling serial interrupt
• Configure the SCON register for receiving or transferring operation
• Write subroutine for this interrupt with appropriate function and clear

TI or RI flags with in this routine.

https://www.elprocus.com/communication-based-projects-engineering-students/

•Serial
interrupt
programming

Interfacing
Interfacing is one of the important concepts in microcontroller
8051 because the microcontroller is a CPU that can perform
some operation on a data and gives the output. However to
perform the operation we need an input device to enter the data
and in turn output device displays the results of the operation.
Interfacing is the process of connecting devices together so that
they can exchange the information and that proves to be easier to
write the programs. There are different type of input and output
devices as for our requirement such as LEDs, LCDs, 7segment,
keypad, motors and other devices.

Interfacing the Keyboard to 8051
microcontroller
• The key board here we are interfacing is a matrix keyboard.

This key board is designed with a particular rows and columns.
These rows and columns are connected to the microcontroller
through its ports of the micro controller 8051. We normally use
8*8 matrix key board. So only two ports of 8051 can be easily
connected to the rows and columns of the key board.

• When ever a key is pressed, a row and a column gets shorted
through that pressed key and all the other keys are left
open. When a key is pressed only a bit in the port goes
high. Which indicates microcontroller that the key is pressed.
By this high on the bit key in the corresponding column is
identified.

• Once we are sure that one of key in the key board is pressed
next our aim is to identify that key. To do this we firstly check for
particular row and then we check the corresponding column the
key board.

• To check the row of the pressed key in the keyboard, one
of the row is made high by making one of bit in the output port
of 8051 high . This is done until the row is found out. Once we
get the row next out job is to find out the column of the pressed
key. The column is detected by contents in the input ports with
the help of a counter. The content of the input port is rotated
with carry until the carry bit is set.

• The contents of the counter is then compared and displayed in
the display. This display is designed using a seven segment
display and a BCD to seven segment decoder IC 7447.

• The BCD equivalent number of counter is sent through
output part of 8051 displays the number of pressed key.

Circuit diagram of INTERFACING KEY
BOARD TO 8051.

Keyboard is organized in a matrix of rows and
columns as shown in the figure. The
microcontroller accesses both rows and
columns through the port.

1.The 8051 has 4 I/O ports P0 to P3 each with 8 I/O pins, P0.0 to P0.7,P1.0 to
P1.7, P2.0 to P2.7, P3.0 to P3.7. The one of the port P1 (it understood that P1
means P1.0 to P1.7) as an I/P port for microcontroller 8051, port P0 as an O/P
port of microcontroller 8051 and port P2 is used for displaying the number of
pressed key.
2.Make all rows of port P0 high so that it gives high signal when key is pressed.
2. See if any key is pressed by scanning the port P1 by checking all columns
for non zero condition.
3. If any key is pressed, to identify which key is pressed make one row high at
a time.
4. Initiate a counter to hold the count so that each key is counted

5. Check port P1 for nonzero condition. If any nonzero number is there in
[accumulator], start column scanning by following step 9.
6. Otherwise make next row high in port P1.
7. Add a count of 08h to the counter to move to the next row by repeating
steps from step 6.
8. If any key pressed is found, the [accumulator] content is rotated right
through the carry until carry bit sets, while doing this increment the count in
the counter till carry is found.
9. Move the content in the counter to display in data field or to memory
location
10. To repeat the procedures go to step 2.

Program to interface matrix keyboard to microcontroller 8051
Start of main program: to check that whether any key is pressed

start: mov a,#00h
mov p1,a ;making all rows of port p1 zero
mov a,#0fh
mov p1,a ;making all rows of port p1 high

press: mov a,p2
jz press ;check until any key is pressed

after making sure that any key is pressed

mov a,#01h ;make one row high at a time
mov r4,a
mov r3,#00h ;initiating counter

next: mov a,r4
mov p1,a ;making one row high at a time
mov a,p2 ;taking input from port A
jnz colscan ;after getting the row jump to check

column
mov a,r4
rl a ;rotate left to check next row
mov r4,a
mov a,r3
add a,#08h ;increment counter by 08 count
mov r3,a
sjmp next ;jump to check next row

•
after identifying the row to check the colomn following steps are followed

•
• colscan: mov r5,#00h
• in: rrc a ;rotate right with carry until get the carry
• jc out ;jump on getting carry
• inc r3 ;increment one count
• jmp in
• out: mov a,r3
• da a ;decimal adjust the contents of counter
• before display
• mov p2,a
• jmp start ;repeat for check next key

LCD DIS PLAY

LCD INTERFACING WITH 8051 MICROCONTROLLER

• A Brief Note on 16×2 LCD
16×2 Liquid Crystal Display which will display the 32 characters
at a time in two rows (16 characters in one row). Each character
in the display is of size 5×7 pixel matrix. This matrix differs for
different 16×2 LCD modules,. There are 16 pins in the LCD
module, the pin configuration us given below

PIN
NO NAME FUNCTION

1 VSS Ground pin
2 VCC Power supply pin of 5V
3 VEE Used for adjusting the contrast commonly attached to the potentiometer.

4 RS RS is the register select pin used to write display data to the LCD (characters), this pin has to be high when
writing the data to the LCD. During the initializing sequence and other commands this pin should low.

5 R/W Reading and writing data to the LCD for reading the data R/W pin should be high (R/W=1) to write the data to
LCD R/W pin should be low (R/W=0)

6 E Enable pin is for starting or enabling the module. A high to low pulse of about 450ns pulse is given to this pin.

7 DB0
8 DB1
9 DB2
10 DB3
11 DB4 DB0-DB7 Data pins for giving data(normal data like numbers characters or command data) which is meant to be

displayed
12 DB5
13 DB6
14 DB7
15 LED+ Back light of the LCD which should be connected to Vcc
16 LED- Back light of LCD which should be connected to ground.

So by reading the above table you can get a brief idea how to display a character.
For displaying a character you should enable the enable pin (pin 6) by giving a pulse
of 450ns, after enabling the pin6 you should select the register select pin (pin4) in
write mode. To select the register select pin in write mode you have to make this pin
high (RS=1), after selecting the register select you have to configure the R/W to
write mode that is R/W should be low (R/W=0).

• Follow these simple steps for displaying a character or data
• E=1; enable pin should be high
• RS=1; Register select should be high
• R/W=0; Read/Write pin should be low.
• To send a command to the LCD just follows these steps:
• E=1; enable pin should be high
• RS=0; Register select should be low
• R/W=0; Read/Write pin should be low.

Interfacing 16×2 LCD with 8051 Circuit
Diagram

8051
IC

COMMAND FUNCTION

0F For switching on LCD, blinking the cursor.

1 Clearing the screen

2 Return home.

4 Decrement cursor

6 Increment cursor

E Display on and also cursor on

80 Force cursor to beginning of the first line

C0 Force cursor to beginning of second line

38 Use two lines and 5x7 matrix

83 Cursor line 1 position 3

3C Activate second line

0C3 Jump to second line position 3

0C1 Jump to second line position1

Commands: There are some preset commands which will do a specific task in the LCD. These commands are very important for displaying data in LCD.
The list of commands given below:

EXTERNAL MEMORY INTERFACING WITH 8051
MICROCONTROLLER

PIN DIAGRAMME OF 8051 MICROCONTROLLER

• PSEN: PIN 29
1.This is an output pin.
2.PSEN stands for “program store enable.”
3.Connect this PSEN pin to the OE pin of the ROM to enable access to

data.
4.It is an active low output signal.
5.It is used to enable/read external program memory (ROM).

1. When [PSEN] = 0, then external program memory becomes enabled, and
microcontroller reads the content of external memory location.

2. Therefore, it is connected to (OE) of external ROM. It is activated twice every
external ROM memory cycle.

3. When [PSEN] = 1, then the data cannot be read from any external program
memory, then the microcontroller has to depend on the on-chip ROM to
store the program code.

• ALE: PIN 30
1.Port 0 of 8051 can be used to access the address bus and the data

bus.
2.The ALE pin is used for de-multiplexing the address and the data by

connecting to the G-pin of the 74LS373 latch.
3.It is also Active High

https://technobyte.org/ports-8051-functions-specifications-four/

• EA: PIN 31
1.EA is the External Access pin of 8051 microcontrollers.
2.The EA pin is connected to GND to indicate that the code is stored

completely in the external program memory (64kB).
3.To use both on-chip ROM (4kB) and external ROM (60kB) together,

the EA pin is connected to the +5V VCC supply.
4.The overline represents active-low operation, i.e. Turns ON when a low

pulse/signal is provided.
• RD: P3.7
• RD is used as a read control signal pin.
• WR: P3.6
• WR is used as a write control signal pin.

• All memory chips have one or more than one pins called the Chip
Select (CS) pins (Chip Enable (CE) pins). These pins are commonly
active-low pins, and we have to activate it to access the chip it
belongs to.

• In connecting a memory chip to the 8051, note the following points:
1.The data bus of the 8051 is connected directly to the data pins of the

memory chip.
2.Control signals RD (read) and WR (memory write) from the 8051 are

connected to the OE (output enable) and WE (write enable) pins of
the memory chip.

3.In the case of the address buses, while the lower bits of the address
from the 8051 go directly to the memory chip address pins, the upper
ones are used to activate the CS/CE pin of the memory chip via an
additional decoding circuitry. The latter is known as Chip Select Logic.

• The 74LS138 latch this is chip select logic ckt

• 74LS138 as a decoder circuit
1.The three inputs A, B, and C generate eight active low outputs Y0 – Y7
2.We connect each of the Y output to CS of a memory chip, allowing us

control over eight memory blocks via a single 74LS138.
3.In the 74LS138, the inputs to A, B, and C activates the output. Also,

there are three additional inputs, G2A, G2B, and G1.
4.G2A and G2B are the enable input pins and are active low. G1 is the

enable input pin that is active high.
5.If anyone of the inputs G1, G2A, or G2B is not connected to an

address signal, they must be activated permanently either by VCC or
ground, depending on the activation level.

• Port 0 and Port 2
1.These ports provide a 16-bit address to access External Memory.
2.P0: Multiplexed lower order address/data bus: AD0-AD7.
3.P2: Higher-order address bus: A8-A15.
4.When ALE = 0, P0 facilitates data path
5.When ALE = 1, P0 facilitates address path
6.We can address 2^16 = 64Kb memory (i.e. 64Kb code memory and

64Kb data memory) by these 16 address lines from A0 to A15.
7.To extract the address from the P0 pins, we connect P0 to a 74LS373

and use the ALE pin to latch the address.

• STEPS to interface external program ROM with 8051
1.Step 1: Connect EA pin to ground
2.Step 2: Connect the PSEN to the CE and OE.
3.Step 3: Then, Port 2 (P2.0 – P2.7) to A8 – A12 pins of ext. ROM.
4.Step 4: Connect ALE to G of 74LS373 latch to enable it.
5.Step 5: Next, connect the OC of 74LS373 to GND.
6.Step 6: Connect Port 0 (P0.0 – P0.7), which consists of both address

and data multiplexed into Port 0 to 1D – 8D pins of 74LS373 latch to
demultiplex it and 1Q – 8Q of the latch to A0 – A7 of ext. ROM.

7.Step 7: Connect Port 0 (P0.0 – P0.7) to D0 – D7 of the ext. ROM.
8.Step 8: VPP of ext. ROM to VCC.

• Now you might be wondering what does Ax, Dx, or ADx mean.
• ADx- Multiplexed address and data lines.
• Ax – The address lines determine the location from which the data is to be

accessed or be sent.
• Dx- The data lines are used to send/receive the data to/from the external

memory.
• Let’s take an example. Suppose we want to activate the chip connected to

output Y0 of the decoder.
• Based on the simple working of a decoder, we know that the values of A, B,

and C pins (A13, A14,A15) need to be 1 each. So for ABC = “000” we select
the Y0 output, and the chip connected to it is now accessible.

• But what range of addressable memory does this occupy? That will depend
on the values of the entire 16-bit address line taken as a whole. Note that
A15 also has to be 0 at all times since it is connected to G2A, the enable
input pin that’s active low. With these four values fixed (A15A14A13A12 =
“0001”), we can now vary the remaining pins from 0 to 1 each to get the
final address range accessible via output pin Y0.

https://technobyte.org/priority-encoders-decoders-binary-encoders/

Circuit diagram to interface external program ROM with 8051

From the above table, we can see that the address range of Y0 is from 0000H to
1FFFH.

EXTERNAL DATA MEMORY OF 8051

STEPS to interface external RAM with 8051

1.Step 1: Connect RD to OE of ext. RAM.
2.Step 2: Connect WR to WE of ext. RAM.
3.Step 3: Connect active low input of NAND gate to CE of external RAM,

where the input to NAND gate are address lines A15, A14, and A13.
We’ve given 0 1 0 to these lines to access the 8000H location of the
external RAM.

From the above table, we can see that the address range of Y1 is from 3000H to 3FFFH.

• Interfacing external program ROM, data ROM and external RAM with the 8051
• Next, let’s interface both program ROM and data RAM to 8051, Let’s say we want to interface

16KB data RAM, 16KB program ROM, and 16KB of data RAM, then we’ll have to follow the
following steps:

1. Step 1: Calculate the number of address lines required to access 16KB of data, that is 214 = 16KB.
Here, we require 14 address lines A0 – A13.

2. Step 2: Decide the location of RAM and ROM, here we are going to interface program ROM from
0000H and data RAM from 8000H.

3. Step 3: Select the decoder circuit, here we’re going to select 74LS138 decoder.
4. Step 4: We do not need a decoder circuit for program ROM, but we have to connect the 74LS138

decoder to data ROM and data RAM.
5. Step 5: Connect G1 to VCC, G2A, and G2B to ground.
6. Step 6: Connect input A and B to P2.6 and P2.7 respectively, and the input C to ground.
7. Step 7: We connect external program and data ROM, for that we can use an AND gate with its

input being signal from RD (to access external data space) and PSEN (to access external program
space) and output to OE of external ROM.

8. Step 8: To interface the external RAM, we connect both RD and WR to WE and OE respectively of
external RAM

ADC Interfacing with 8051

• The data we process in a microcontroller normally deals with digital signals. But there may a situation where we
have to deal with external inputs such as analog signals. All most all the input signals from physical sensors are of
analog signals. In such cases, we can interface the microcontroller with an external device such as an ADC0808 to
convert the analog signal to a digital signal. Because our microcontrollers can only understand 0 and 1. In this
article, we look into the details of ADC interfacing with 8051.

• In the present time, there are lots of microcontrollers in the market which has inbuilt ADC with one or more
channels, E.g.: PIC18F4550, LPC1768, etc. And by using their ADC registers we can interface. Unfortunately,
8051 doesn’t have an internal module so we will go for an external ADC. which is ADC0808.

• ADC0808 :

• ADC0808 is a commonly used External 8 bit ADC and it has 28 pins. It can measure up to eight ADC values from 0 to 5 volt
since it has eight channels. when voltage reference is +5V, its Step size will be 19.53mV. That is, for every increase of 19.53mV
on the input side there will be an increase of 1 bit at the output side.

• ADC0808 needs an external clock to operate. The ADC needs some specific control signals for its operations like start
conversion and bring data to output pins. When the conversion is complete the EOC pins go low to indicate the end of a
conversion and that the data is ready to be picked up.

• Features

• Easy interface to all microprocessors

• Operates ratio metrically or with 5 V DC or analog span adjusted voltage reference

• No zero or full-scale adjust required

• 8-channel multiplexer with address logic

• 0V to 5V input range with single 5V power supply

• Outputs meet TTL voltage level specifications

28-pin molded chip carrier package

Pin diagram ADC0808

Pin No Function Name

1 Analog Input Pin 3 IN3

2 Analog Input Pin 4 IN4

3 Analog Input Pin 5 IN5

4 Analog Input Pin 6 IN6

5 Analog Input Pin 7 IN7

6
Start conversion; input pin; a low to
high pulse is given

START

7
End of conversion; output pin; goes
low when the conversion is over

EOC

8 Digital output bit D3

9
Input pin; a low to high pulse brings
data to output pins from the internal
registers at end of conversion

Output Enable

10 Clock input; to provide external clock Clock Input

11 Supply voltage; 5V Vcc

12 Positive reference voltage Vref+

13 Ground (0v) GND

14 Di it l t t bit D1

Pin Description

17 Digital output bit D0

18 Digital output bit D4

19 Digital output bit D5

20 Digital output bit D6

21 Digital output bit D7

22
Address latch enable; Input
pin; low to high pulse is required
to latch in the address

ALE

23 Address line C Address C

Channel Selection :
We can select any input channel by using the Address lines ADD A, ADD B and ADD C. As you can see in the below table, We
can select the input line IN0 by keeping all three address lines ADD A, ADD B and ADD C Low.

Steps to be followed to interface ADC (ADC0808) with 8051

1. Start

2. Select the channel using Address pins.

3. A Low – High transition on ALE to latch in the address.

4. A Low – High transition on Start to reset the ADC’s SAR.

5. A High – Low transition on ALE.

6. A High – Low transition on start to start the conversion.

7. Wait for End of cycle (EOC) pin to become high.

8. Make Output Enable pin High.

9. Take Data from the ADC’s output

10. Make Output Enable pin Low.

11. Stop

Working:
In this project we have interfaced three channels of ADC0808. And for demonstration we have used three variable resistors. When we power
the circuit then microcontroller initialize the LCD by using appropriate command, gives clock to ADC chip, selects ADC channel by using
address line and send start conversion signal to ADC. After this ADC first reads selected ADC channel input and gives its converted output to
microcontroller. Then microcontroller shows its value at Ch1 position in LCD. And then microcontroller changes ADC channel by using
address line. And then ADC reads selected channel and send output to microcontroller. And show on LCD as name Ch2. And like wise for
other channels.

• Working of ADC0808 is much similar to working of ADC0804. In this, first microcontroller provides a 500
KHz clock signal to ADC0808, using the Timer 0 interrupt, as ADC requires clock signal to operate. Now
microcontroller sends a LOW to HIGH level signal to ALE pin (its active-high pin) of ADC0808 to enable
the latch in the address. Then by applying HIGH to LOW Level signal to SC (Start Conversion), ADC
starts analog to digital conversion. And then wait for the EOC (End of Conversion) pin to go LOW. When
EOC goes LOW, it means analog to digital conversion has been completed and data is ready to use.
After this, microcontroller enables the output line by applying a HIGH to LOW signal to OE pin of
ADC0808.

• ADC0808 gives ratio metric conversion output at its output pins. And the formula for radiometric
conversion is given by:

• Vin/(Vfs-Vz)= Dx/(Dmax-Dmin)
• WHERE
• Vin is input voltage for conversion
• Vfs is full scale Voltage
• Vz is zero voltage
• Dx is data point being measure
• Dmax is Maximum data limit
• Dmin is Minimum data limit

SERIAL COMMUNICATION IN 8051

serial communication of data in one of the most widely used microcontroller (8051). Lot of applications require microcontrollers to
either accept the data in serial form or o/p the data in serial form.

Microcontrollers can communicate data in either parallel form or serial form. In parallel communication, data is transferred over more
than one wire for example if 8 wires of one microcontroller are connected to any other peripheral device or another microcontroller
then at a particular time 8 data bits are transferred. On the other hand in serial communication, data is transferred in bit by bit
manner over a single wire. For example if a microcontroller 1 is transferring data to another microcontroller 2 in serial form then TXD
pin of microcontroller 1 will be connected to RXD pin of microcontroller 2 and data is transferred from microcontroller 1 to
microcontroller 2 in bit by bit manner over a single wire. If microcontroller 2 wants to send some data to microcontroller 1 then for
that TXD pin of microcontroller 2 must be connected to RXD pin of microcontroller 1 and again data bits will be transferred over a
single wire. So it is clear that for full duplex communication of data two wires are involved and for simplex communication only one
wire will be involved.
Parallel communication requires more number of wires than serial communication but it has higher speed of data transfer as more
than one bit is transferred at a given time. Serial communication is preferred when the distance b/w transmitter and receiver is large
and it is required to save the cabling cost and reduce h/w complexity but definitely this comes at the cost of reduced speed of data
transfer.

• Serial communication can be classified on the basis how transmission
occurs.

• 1. Simplex: In simplex, the hardware such that data transfer takes
place in only one direction. Ex: Computer to Printer communication

• 2. Half Duplex: The half duplex transmission allows the data transfer
in both direction but not simultaneously. Ex: Walkie talkie

• 3. Full Duplex: It allows the data transfer in both direction
simultaneously. Ex: Telephone lines Data transfer schemes

• The data in the serial communication may be sent in two formats:

• Asynchronous: Asynchronous formats are character oriented.
• In this type the bits or character or data word are sent at constant rate,

but characters can come at any rate (asynchronously) as long as they do
not overlap.

• When no characters are being sent a line stays high at logic1 called mark,
logic0 is called space.

• The beginning of a character is indicated by start bit which is always low.
• This is used to synchronize the transmitter and receiver. After the start

bit the data bits are sent with least significant bit first followed by one or
more stop bits (active high).

• The stop bits indicate the end of character.
• The combination of start but, character and stop bits is known as frame.

The start and stop bits carry no information, but are required because of
asynchronous nature of data.

• Synchronous:
• The start and stop bits in each frame of asynchronous format

represents wasted overhead bytes that reduce overall character rate.
These start and stop bits can be eliminated by synchronizing receiver
and transmitter.

• They can be synchronized by having a common clock signal.
• Such a communication is called synchronous serial communication.

In this transmission synchronous bits are inserted instead of start and
stop bits

• The data rate can be expressed as bit/sec or character/sec.
• The term bit/sec is also called baud rate.

• Data Transfer
• In 8051 microcontroller serial communication of data is performed

with the help of following special purpose registers-
• SBUF (Serial buffer register)
• SCON (serial control register)
• TMOD (Timer mode register)
• TCON (Timer control register)
• TH1 (Timer1 register higher byte)
• Before going further it is extremely important to first understand these

registers and their importance with reference to serial
communication.

UART(universal asynchronous transmitter and receiver)

• UART stands for a universal asynchronous transmitter and receiver.
• UART Protocols is a serial communication with two wired protocols.
• The data cable signal lines are labeled as Rx and Tx. Serial communication is commonly used for transmitting

and receiving the signal.

• TX and RX are connected between two devices. (eg. USB and computer)
It is transferred and receives the data serially bit by bit without clock pulses.

• The UART takes bytes of data and sends the individual bits in a sequential manner.
• UART is a half-duplex protocol. Half-duplex means transferring and receiving the data but not at the same time.

Most of the controllers have hardware UART on board.
• It uses a single data line for transmitting and receiving the data.
• It has one start bit, 8-bit data and one-stop bit mean the 8-bit data transfer one’s signal is high to low.
• UART commonly built in microcontrollers
• Ex: Emails, SMS, Walkie-talkie.

• The Universal Asynchronous Receiver Transmitter (UART) block diagram has two main components.
• They are the receiver and transmitter. These two components are coupled with a baud rate generator.
• This is used mainly for speed generation when the receiver and transmitter section has to receive or

transmit data.
• The receiver section consists of shift register, control logic and a receive hold register.
• Likewise, transmitter section also has a shift register, control logic and a transmit hold register.
• The transmitter hold register contains the data to be transmitted. The shift registers in the two

components move the data bits left or right till the data transmission or receive operation is completed.
• A write or read logic is used to indicate when the read and write operation must be done.
• The baud rate generator is used to generate speeds ranging from 110 bps to 230400 bps.
• The micro-controllers typically use a baud rate of 9600 bps to 115200 bps.

UART Communication Process

• Universal Asynchronous Receiver Transmitter communication takes place through two mediums i.e.
transmitting UART and receiving UART.

• The data flow is from both receiving (Rx) and transmitting (Tx) pins of Universal Asynchronous
Receiver Transmitter and only two cables are required for this purpose.

• Universal Asynchronous Receiver Transmitter communication happens asynchronously i.e. clock or
other timing signals are absent.

• Instead of that, UART has special start and stop bits that are added to the beginning and end of the
data packet respectively. These bits assist the receiving UART in identifying the actual received data.

• The above figure shows a typical Universal Asynchronous Receiver Transmitter (UART)
communication process.

• The controlling device transfers data to the transmitting UART through a data bus. This controlling
device can be a CPU of a micro-controller or microprocessor, memory units like ROM or RAM. The
transmitting UART receives data through parallel mode of communication.

• The data is converted into a data packet by adding the start, stop and parity bits by the Universal
Asynchronous Receiver Transmitter (UART). It is then converted from parallel to serial form using a
shift register and is transmitted bit wise from the Tx pin.

• This serial data is received by the Rx pin and identifies the actual data through the start and stop
bits. Data integrity is verified using the parity bit. The data is again converted into parallel mode
using shift register and is dispatched to the controller at the receiving end.

https://electricalfundablog.com/asynchronous-transmission-communication-characteristics-process-of-data-flow-advantages-and-disadvantages/

UART Protocol Data Flow

External communication interfaces RS 232

• RS232 Protocol – Basics

• RS232 is one of the most widely used techniques to interface external equipment with computers.
• RS232 is a Serial Communication Recommended Standard Number developed by the Electronic Industry

Association (EIA) and Telecommunications Industry Association (TIA).
• RS232 defines the signals connecting between DTE and DCE. Here, DTE stands for Data Terminal Equipment

and an example for DTE is a computer.
• DCE stands for Data Communication Equipment or Data Circuit Terminating Equipment and an example for

DCE is a modem.
• RS232 was introduced in 1960’s and was originally known as EIA Recommended Standard 232. RS232 is one

of the oldest serial communication standards with ensured simple connectivity and compatibility across different
manufacturers. Originally, the DTEs in RS32 are electromechanical typewriters and DCEs are modems.

• RS232 uses serial communication, where one bit of data is sent at a time along a single data line. This is
contrast to parallel communication, where multiple bits of data are sent at a time using multiple data lines.

The Computer and Modem communicate with each other using RS232
interface and the communication between the modems is established using
telecommunication links.

• How RS232 Works?
• In RS232, the data is transmitted serially in one direction over a single data line.
• In order to establish two way communication, we need at least three wires (RX, TX and GND) apart from

the control signals. A byte of data can transmitted at any time provided the previous byte has already
been transmitted.

• RS232 follows asynchronous communication protocol i.e. there is no clock signal to synchronize
transmitter and receiver. Hence, it uses start and stop bits to inform the receiver when to check for data.

• There is a delay of certain time between the transmissions of each bit. This delay is nothing but an
inactive state i.e. the signal is set to logic ‘1’ i.e. -12V (if you remember, logic ‘1’ in RS232 is -12V and
logic ‘0’ is +12V).

• First, the transmitter i.e. the DTE sends a Start bit to the receiver i.e. the DCE to inform it that data
transmission starts from next bit. The Start bit is always ‘0’ i.e. +12V. The next 5 to 9 characters are data
bits.

• If parity bit is used, a maximum of 8 bits can be transmitted. If parity isn’t used, then 9 data bits can be
transmitted. After the data is transmitted, the transmitter sends the stop bits. It can be either 1 bit or 1.5
bits or 2 bits long. The following image shows the frame format of the RS232 protocol.

•

https://www.electronicshub.org/wp-content/uploads/2017/07/RS232-Frame-Format.jpg

frame format of the RS232 protocol.

RS-422

• RS-422 uses a twisted pair differential signal (more on this
below) for receiving and transmitting data. It runs in full-duplex
mode, with each transmission direction using two wires apiece.
Putting on our math hats, this means that it requires a total of
four wires. It is regularly used in a point to point (two devices
talking to each other similar to your standard RS-232
connection) or multi-drop topology. When set up in the latter
configuration, it can connect one driver with up to ten receivers
on a single bus, often through a daisy chain.

https://en.wikipedia.org/wiki/Twisted_pair

RS-485

• Like RS-422, RS-485 also uses a twisted pair differential signal for receiving
and transmitting data. However, this is most commonly done over a single
twisted pair, which requires (as you probably guessed) two wires. The RS-
485 standard was created to handle the problem of allowing several
devices to talk to each other, and accordingly, it supports a multi-point
topology. It can manage up to 32 devices, and the use of repeaters can
increase this number to 256. This standard allows a reliable signal to persist
under a higher load, which makes it a popular interface for industrial
applications, including a variety of automation systems.

• RS-485 can run in full-duplex mode and when it does, it essentially
becomes RS-422. In fact, you can often take hardware utilizing RS-485 and
successfully drop it into an RS-422 setup. However, the reverse is not true,
as RS-422 cannot operate in half-duplex mode, and therefore is unable to
support multi-point topologies.

RS422 vs RS485
•

RS422 and RS485 are hardware only standards. These Standards do not define how data is to be sent, AKA
the protocol, nor do they define any speed, AKA Bits Per Second (bps). They exist ONLY to supplement other
complete communication protocols, such as RS232, and allow these communication standards extend their
communication in terms of physical distance and high speed while maintaining a robust reliability in doing so.

•
What both RS422 and RS485 buses standards have in common that they both use hardware differential
signalling techniques to allow a combination of high speed communication over long distances who ground
potential differences can be non zero. However from a communication direction point of view, RS422 is not
compatible with RS485, but RS485 can be made compatible with RS422.

• FUNCTIONAL KEY BUS DIFFERENCE

• The biggest difference between RS422 and RS485 is how they communicate with devices on a single pair of
differential wires.
RS422: Each Bus only offers One-way communication. A single transmitting (master) device to one or more
receiving (slave) devices on a single pair of wires. Two-way communication requires TWO RS422 buses in
parallel. One for each direction. Hence a two-way RS422 bus requires 4 wires.

• RS485: Each Bus offers Two-way communication. Multiple devices can share a single pair of wires. Each
device has a transceiver allowing both transmitting and receiving capabilities. This allows point to point two
way communication between any given device anywhere on the bus to any OTHER device anywhere on the
RS485 bus. Hence two-way communication requires, at a minimum, ONE RS485 bus.

•

•
HARDWARE: RS422 vs RS485 TRANSCEIVER CHIP SIMILARITIES
These chips allow a given device to access the RS422 or RS485 bus respectively. Both chips contains a transceiver. A
transceiver contains both a transmitter and receiver in one part. One side of the chip interfaces with standard logic
signals from the local device it is connect to while the other side connect to the bus. The transmitter take a digital
signal from the device and translates it so it can drive the bus with the digital data. The receivers listens to the bus
digital data for the signal on the bus and translates back into a digital signal for the device.
HARDWARE: RS422 vs RS485 TRANSCEIVER CHIP DIFFERENCES

• RS422 CHIP.
1) The transceivers are fully isolated from each other driving TWO independent one way RS422 bus's in OPPOSITE
directions. The transmitter drives one bus and the receiver receives from a 2nd bus. Hence this is a 4 wire bus.

• 2) At a minimum, two RS422 chips are required to make a complete two way RS422 bus. The transmitter of the first
chip drives the receiver of the 2nd chip and the tranmitter of the 2nd chip drives the receiver of the first chip.

• 3) RS422 transmitter and receivers are always on and always connected to the RS422 bus. They cannot be
disconnected.

•
4) The transmitter is ALWAYS driving the bus to a known data state (mark or space)

• 5) Each RS422 bus can only be driven by one transmitter.

• 6) Multiple RS422 receivers can monitor the a given RS422 bus.

• RS485 CHIP:

1) The transceivers are fully connected to each other internally working with ONE RS485 bus.
2) RS485 transceivers have Enable and Disabled functions. The RS485 transmitter and receivers can be
DISCONNECTED from the RS485 bus.
3) The ability to disable e tranmitter allows RS85 transceiver can drive the bus.
Unlike RS422 drivers, RS485 drivers have a enable pins on the transceivers which allows the chip to isolate
itself from the bus. This is what make bi-directional communication possible.

THE DIFFERENTIAL SIGNALLING ADVANTAGE
•

RS422 and RS485 require three wires to send data. Two in the form of a twisted pair for data signalling and one for DC
ground.

The digital signal data is converted from a standard logic signal reference to ground to become represented by the VOLTAGE
POLARITY DIFFERENCE BETWEEN THE TWO SIGNAL WIRES. Twisted Pair wire offers the properties of low mutual inductance
between the two wires.

Differential Signalling Performance Benefits
1) takes the ground wire out of the high speed communication path by making no longer Representative of the signal
ground. Why?
1a) Eliminate Ground Wire Inductance. Inductance is an electrical property that in high speed communication restricts the
speed of communication.
1b) Differences in Earth Ground potentials. The ground wire's only purpose now is to make the two earth ground potential
difference between the devices establish a "common low ground voltage" within the range the RS422 and RS485 chips can
operate with without being damaged. Why? Earth Ground or true 0V is a relative value. It is relative to where your standing
on Earth. One can take a volt meter and stick the ground probe into the earth your standing one and hold the positive probe in
you hanc and you will measure something close to zero volts. Take that same meter connect to your same earth ground and
extend the positive lead a long distance to the location of the other device and you would read a much LARGER NON ZERO
voltage. should be noted when there are two devices separated by long distance, they will NOT have the same earth ground
reference point. It made even worse by high power devices that leak current to Earth Ground.

2) takes the ground wire out of the high speed communication path.

• 2) reject noise from other adjacent wires since the ground is not involved. All noise is common mode which simply means that
it appear on both differential wires at the same time.

Difference between interrupt
and polling
• The main difference between interrupt and polling is that in

interrupt, the device notifies the CPU that it requires attention
while, in polling, the CPU continuously checks the status of the
devices to find whether they require attention.

• In brief, an interrupt is asynchronous whereas polling
is synchronous.

	Slide Number 1
	Slide Number 2
	Slide Number 3
	MICROPROCESSOR AND MICROCONTROLLER
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Instruction Set of 8085An instruction is a binary pattern designed inside a microprocessor to perform a specific function.
	Slide Number 65
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Slide Number 74
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Data Transfer Instructions
	Arithmetic Instructions
	Addition
	Subtraction
	Increment / Decrement
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Arithmetic Instructions
	Logical InstructionsThese instructions perform logical operations on data stored in registers, memory and status flags.
	AND, OR, XOR
	RotateEach bit in the accumulator	can be shifted	either left	or right to the next position.
	Compare
	ComplementThe contents of accumulator can be complemented.
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Logical Instructions
	Branching InstructionsThe branching instruction alter the normal sequential flow.
	Branching Instructions
	Branching Instructions
	Jump Conditionally
	Branching Instructions
	Branching Instructions
	Call Conditionally
	Slide Number 130
	Branching Instructions
	Return Conditionally
	Branching Instructions
	Restart Address Table
	Slide Number 135
	Control Instructions
	Control Instructions
	Control Instructions
	Control Instructions
	Control Instructions
	RIM Instruction
	Control Instructions
	SIM Instruction
	Slide Number 144
	Slide Number 145
	Slide Number 146
	Slide Number 147
	Slide Number 148
	2 Two-Byte Instructions In a two-byte instruction, the first byte specifies the operation code and the second byte specifies the operand. Source operand is a data byte immediately following the opcode. For example: Table 2.2 Example for 2 byte Instruction
	Slide Number 150
	Slide Number 151
	Slide Number 152
	Slide Number 153
	Slide Number 154
	Slide Number 155
	Slide Number 156
	Slide Number 157
	Slide Number 158
	Slide Number 159
	Slide Number 160
	Slide Number 161
	Stack&subroutines
	Slide Number 163
	Slide Number 164
	Slide Number 165
	Slide Number 166
	Slide Number 167
	Slide Number 168
	Slide Number 169
	Slide Number 170
	Slide Number 171
	Slide Number 172
	Slide Number 173
	Slide Number 174
	Slide Number 175
	Slide Number 176
	Slide Number 177
	Slide Number 178
	Slide Number 179
	Slide Number 180
	Slide Number 181
	Slide Number 182
	Slide Number 183
	Slide Number 184
	Slide Number 185
	Assembler	Directives (cont..)
	Assembler	Directives (cont..)
	Slide Number 188
	Assembler	Directives (cont..)
	Assembler	Directives (cont..)
	Assembler	Directives (cont..)
	Slide Number 192
	Slide Number 193
	Slide Number 194
	Slide Number 195
	Slide Number 196
	Slide Number 197
	Slide Number 198
	Slide Number 199
	Slide Number 200
	Slide Number 201
	Slide Number 202
	Slide Number 203
	Slide Number 204
	Slide Number 205
	Slide Number 206
	Slide Number 207
	Slide Number 208
	Slide Number 209
	Slide Number 210
	Slide Number 211
	Slide Number 212
	Slide Number 213
	Slide Number 214
	Slide Number 215
	Slide Number 216
	Slide Number 217
	MODULE –III��8086 ARCHITECTURE��
	 INTRODUCTION
	 Microprocessor
	 Motherboard
	Slide Number 222
	Slide Number 223
	Slide Number 224
	�Intel 8086��Architecture & Programming
	Features of 8086 Microprocessor
	Features Continued …
	�Features Continued …
	Main components present in the microprocessor
	Slide Number 230
	Slide Number 231
	Slide Number 232
	Slide Number 233
	Internal Architecture of 8086
	Slide Number 235
	Slide Number 236
	Slide Number 237
	Execution unit
	Contd..
	Memory Segmentation
	Slide Number 241
	�Advantages of memory segmentation
	PHYSICAL MEMORY ORGANISATION
	Slide Number 244
	Slide Number 245
	Case 2: When a byte of data at an odd address (such as X+1) is to be accessed
	Case 3: When a word of data at an even address (aligned word) is to be accessed:
	Case 4: When a word of data at an odd address (misaligned word) is to be accessed, then the 8086 need two bus cycles to access it: �a) During the first bus cycle, the odd byte of the word (in the high bank) is addressed �
	REGISTER ORGANISATION IN 8086 MP
	Slide Number 250
	Slide Number 251
	Slide Number 252
	Slide Number 253
	Slide Number 254
	Slide Number 255
	Slide Number 256
	Slide Number 257
	Slide Number 258
	Slide Number 259
	Slide Number 260
	Slide Number 261
	�Generation of 20 bit physical address
	Slide Number 263
	PROGRAMMING MODEL
	Slide Number 265
	Slide Number 266
	Slide Number 267
	Slide Number 268
	Slide Number 269
	Slide Number 270
	Slide Number 271
	Slide Number 272
	�INSTRUCTION SET OF 8086
	�Data Transfer Instructions
	�Data Transfer Instructions Cont…
	�Data Transfer Instructions Cont …
	�Arithmetic Instructions
	�Arithmetic Instructions Cont…
	�Arithmetic Instructions Cont…
	�Arithmetic Instructions Cont…
	�Logical Instructions
	�Logical Instructions Cont…
	�Logical Instructions Cont…
	�CONTROL TRANSFER INSTRUCTIONS
	�CONTROL TRANSFER INSTRUCTIONS Cont…
	�CONTROL TRANSFER INSTRUCTIONS Cont…
	CONTROL TRANSFER INSTRUCTIONS Cont…
	CONTROL TRANSFER INSTRUCTIONS Cont…
	PROCESSOR CONTROL
	PROCESSOR CONTROL Cont…
	�STRING CONTROL
	STRING CONTROL Contd…
	�Interrupt Control
	�ASSEMBLER DIRECTIVES
	�ASSEMBLER DIRECTIVES Cont…
	ASSEMBLER DIRECTIVES Cont…
	ASSEMBLER DIRECTIVES Cont…
	Slide Number 298
	Slide Number 299
	Slide Number 300
	Slide Number 301
	Slide Number 302
	Slide Number 303
	Slide Number 304
	Slide Number 305
	Slide Number 306
	Slide Number 307
	Slide Number 308
	Macro
	Slide Number 310
	Slide Number 311
	TIMING DIAGRAMS FOR 8086
	Slide Number 313
	MEMORY READ CYCLE FOR 8086 IN MINIMUM MODE
	Slide Number 315
	Slide Number 316
	Slide Number 317
	Slide Number 318
	I/O INTERFACE �
	Input port: �
	Slide Number 321
	Output port:
	Slide Number 323
	Interfacing Analog to Digital Data Converters
	Slide Number 325
	ADC 0808/0809:
	Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809.
	Fig (1) and Fig (2) show the block diagrams and pin diagrams for ADC 0808/0809
	Fig.1 Block Diagram of ADC 0808/0809
	Fig.2 Pin Diagram of ADC 0808/0809
	Interfacing ADC0808 with 8086 �Interfacing Digital
	Interfacing Digital To Analog Converters: �The
	Pin Diagram of DAC 0800 �Interfacing DAC0800
	: I���Interfacing DAC0800 with 8086 Ad 7523 8-Bit Multiplying DAC: ���
	Keyboard Interfacing � �
	Slide Number 336
	INTERFACING 4×4 KEYBOARD
	DISPLAY INTERFACE
	Interfacing multiplexed 7-segment display
	Interfacing of memory with 8086 microprocessor
	Slide Number 341
	Slide Number 342
	Slide Number 343
	Slide Number 344
	Slide Number 345
	Slide Number 346
	Slide Number 347
	Slide Number 348
	Slide Number 349
	Slide Number 350
	Slide Number 351
	Slide Number 352
	Slide Number 353
	Slide Number 354
	Slide Number 355
	Slide Number 356
	Slide Number 357
	Slide Number 358
	Slide Number 359
	Slide Number 360
	Slide Number 361
	Slide Number 362
	Slide Number 363
	Slide Number 364
	Slide Number 365
	Slide Number 366
	Slide Number 367
	Slide Number 368
	Slide Number 369
	Slide Number 370
	Slide Number 371
	APPLICATIONS OF MICROCONTROLLER
	Slide Number 373
	Slide Number 374
	Slide Number 375
	Slide Number 376
	Slide Number 377
	Slide Number 378
	Slide Number 379
	Slide Number 380
	Slide Number 381
	Slide Number 382
	Slide Number 383
	Slide Number 384
	Slide Number 385
	Slide Number 386
	Slide Number 387
	Slide Number 388
	Slide Number 389
	Slide Number 390
	Slide Number 391
	Slide Number 392
	Slide Number 393
	 Oscillator and clock generator:
	Special function Registers(SFR):
	Slide Number 396
	Slide Number 397
	Slide Number 398
	4. Power control register (PCON): it is 8-bit register. It is byte addressable .Its address is 87H.� its bits are used to control mode of power saving circuit, either idle or power down mode � and also one bit is used to modify baud rate of serial communication.�
	Slide Number 400
	Difference between Von Neumann and Harvard Architecture
	Von Neumann Architecture
	Harvard Architecture
	Harvard Architecture
	Difference between Von Neumann and Harvard Architecture :
	RISC Architecture Basics�
	Slide Number 407
	Pipelining in RISC�
	Characteristic of RISC Architecture�
	CISC Architecture Introductin�
	Slide Number 411
	Main Features of CISC�
	�Characteristic of CISC�
	RISC vs CISC�
	��Difference between RISC and CISC Comparison Chart�
	The pin diagram of 8051 microcontroller looks as follows
	Slide Number 417
	Microcontrollers 8051 Input Output Ports�
	Slide Number 419
	8051 Microcontroller Memory Organization
	PROGRAM MEMORY (ROM) OF 8051 MICROCONTROLLER�
	INTERNAL ROM AND EXTERNAL ROM ORGANIZATION OF 8051
	There is another way to fetch the instructions: ignore the Internal ROM and fetch all the instructions only from the External Program Memory (External ROM). For this scenario, the EA Pin must be connected to GND. In this case, the memory addresses of the external ROM will be from 0000H to FFFFH.as shown in fig
	DATA MEMORY (RAM) OF 8051 MICROCONTROLLER�
	The final 80B of the internal RAM i.e. addresses from 30H to 7FH, is the general purpose RAM area which are byte addressable.�These lower 128B of RAM can be addressed directly or indirectly.
	Slide Number 426
	INSTRUCTION SET OF 8051 MICROCONTROLLER
	Slide Number 428
	Slide Number 429
	Slide Number 430
	Slide Number 431
	Slide Number 432
	Slide Number 433
	Slide Number 434
	Slide Number 435
	Slide Number 436
	Slide Number 437
	Slide Number 438
	Slide Number 439
	Slide Number 440
	Slide Number 441
	Slide Number 442
	Slide Number 443
	Slide Number 444
	Slide Number 445
	Slide Number 446
	Slide Number 447
	Slide Number 448
	DATA TRANSFER INSTRUCTIONS
	ARITHMATIC INSTRUCTIONS
	LOGICAL INSTRUCTIONS
	BOOLEAN INSTRUCTIONS
	PROGRAMME BRANCHING INSTRUCTIONS
	ADDRESSING MODES OF 8051
	Slide Number 455
	Slide Number 456
	Types of Interrupts in 8051 Microcontroller�
	The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are generated by additional interfacing devices or switches that are externally connected to the microcontroller. These external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt corresponding to the memory location is given in the interrupt vector table below.�
	Interrupt Structure of 8051 Micro controller�
	interrupt structure of 8051 microcontroller
	Interrupt Enable (IE) Register
	Interrupt Enable (IE) Register
	Interrupt Priority Register
	Interrupt Priority Register
	Slide Number 465
	Slide Number 466
	Interrupt Programming in 8051�
	Slide Number 468
	Slide Number 469
	Slide Number 470
	Slide Number 471
	Slide Number 472
	Slide Number 473
	Slide Number 474
	Slide Number 475
	Slide Number 476
	Special function Registers(SFR):
	Slide Number 478
	Slide Number 479
	Slide Number 480
	4. Power control register (PCON): it is 8-bit register. It is byte addressable .Its address is 87H.� its bits are used to control mode of power saving circuit, either idle or power down mode � and also one bit is used to modify baud rate of serial communication.�
	Types of Interrupts in 8051 Microcontroller�
	The Timer and Serial interrupts are internally generated by the microcontroller, whereas the external interrupts are generated by additional interfacing devices or switches that are externally connected to the microcontroller. These external interrupts can be edge triggered or level triggered. When an interrupt occurs, the microcontroller executes the interrupt service routine so that memory location corresponds to the interrupt that enables it. The Interrupt corresponding to the memory location is given in the interrupt vector table below.�
	Interrupt Structure of 8051 Micro controller�
	interrupt structure of 8051 microcontroller
	Interrupt Enable (IE) Register
	Interrupt Enable (IE) Register
	Interrupt Priority Register
	Interrupt Priority Register
	Slide Number 490
	Slide Number 491
	Interrupt Programming in 8051�
	Slide Number 493
	Slide Number 494
	Slide Number 495
	Slide Number 496
	Slide Number 497
	Interfacing
	Interfacing the Keyboard to 8051 microcontroller��
	Slide Number 500
	Slide Number 501
	 Circuit diagram of INTERFACING KEY BOARD TO 8051.
	Keyboard is organized in a matrix of rows and columns as shown in the figure. The microcontroller accesses both rows and columns through the port. �
	Slide Number 504
	Slide Number 505
	Slide Number 506
	Slide Number 507
	Slide Number 508
	LCD DIS PLAY
	LCD INTERFACING WITH 8051 MICROCONTROLLER
	Slide Number 511
	Slide Number 512
	So by reading the above table you can get a brief idea how to display a character. For displaying a character you should enable the enable pin (pin 6) by giving a pulse of 450ns, after enabling the pin6 you should select the register select pin (pin4) in write mode. To select the register select pin in write mode you have to make this pin high (RS=1), after selecting the register select you have to configure the R/W to write mode that is R/W should be low (R/W=0).
	Interfacing 16×2 LCD with 8051 Circuit Diagram�
	Slide Number 515
	EXTERNAL MEMORY INTERFACING WITH 8051 MICROCONTROLLER
	PIN DIAGRAMME OF 8051 MICROCONTROLLER
	Slide Number 518
	Slide Number 519
	Slide Number 520
	Slide Number 521
	Slide Number 522
	Slide Number 523
	Slide Number 524
	Slide Number 525
	Slide Number 526
	Circuit diagram to interface external program ROM with 8051�
	From the above table, we can see that the address range of Y0 is from 0000H to 1FFFH.�
	EXTERNAL DATA MEMORY OF 8051
	STEPS to interface external RAM with 8051�
	Slide Number 531
	Slide Number 532
	Slide Number 533
	Slide Number 534
	Slide Number 535
	ADC Interfacing with 8051�
	Slide Number 537
	Pin diagram ADC0808�
	Slide Number 539
	Slide Number 540
	Channel Selection :�We can select any input channel by using the Address lines ADD A, ADD B and ADD C. As you can see in the below table, We can select the input line IN0 by keeping all three address lines ADD A, ADD B and ADD C Low.�
	Steps to be followed to interface ADC (ADC0808) with 8051��
	Slide Number 543
	Slide Number 544
	Slide Number 545
	Slide Number 546
	Slide Number 547
	Slide Number 548
	Slide Number 549
	Slide Number 550
	Slide Number 551
	Slide Number 552
	Slide Number 553
	Slide Number 554
	Slide Number 555
	Slide Number 556
	Slide Number 557
	Slide Number 558
	Slide Number 559
	Slide Number 560
	Slide Number 561
	Slide Number 562
	Slide Number 563
	Slide Number 564
	Slide Number 565
	UART(universal asynchronous transmitter and receiver)
	Slide Number 567
	Slide Number 568
	UART Communication Process
	Slide Number 570
	UART Protocol Data Flow
	Slide Number 572
	Slide Number 573
	External communication interfaces RS 232
	Slide Number 575
	Slide Number 576
	Slide Number 577
	The Computer and Modem communicate with each other using RS232 interface and the communication between the modems is established using telecommunication links.
	Slide Number 579
	Slide Number 580
	frame format of the RS232 protocol.
	RS-422
	RS-485
	RS422 vs RS485��
	Slide Number 585
	Slide Number 586
	THE DIFFERENTIAL SIGNALLING ADVANTAGE
	Difference between interrupt and polling
	Slide Number 589

